5.2. a. n = 5; p = 0.4; binomial $P(x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$

 $P(x \le 1) = P(x = 1) + P(x = 0)$ = $P(1) = \frac{5!}{1!(5-1)!} \cdot 4^{1} \cdot 6^{5-1} + P(0) = \frac{5!}{0!(5-0)!} \cdot 4^{0} \cdot 6^{5-0}$ = 0.2592 + 0.0778= 0.3370

b. n = 5; p = 0.4, binomial

$$P(x \ge 4) = P(x = 4) + P(x = 5)$$

Use
$$P(x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

$$P(x \ge 4) = .0768 + .0102 = .0870$$

c. n = 5; p = .4; binomial P(x < 1) = P(x = 0) = .0778

Expected number = 8(0.37) = 2.96

Variance = 8(0.37)(0.63) = 1.8648, standard deviation = 1.3656

 $P(x \le 2) = 0.0248 + 0.1166 + 0.2397 = 0.3811$

5.25.

It is a binomial distribution with n=3, p= probability of defective module

p = .05; $P(x \ge 1) = 1 - P(x=0) = 1 - 0.8574 = 0.1426$; yes it is larger

For n = 3 the highest the p level can be such that the P($x \ge 1$) < .025 is less than .01 (0.0084). At p = .01, P($x \ge 1$) = 1 - 0.9703 = 0.0297 which is still slightly larger than the required .025 level. At p = 0.0084, P($x \ge 1$) = .02499.

5.30. a. $E[x] = \lambda t = 18(1/3) = 6.0$ $V[x] = \lambda t = 6.0$ $SD[x] = \sqrt{\lambda t} = 2.4494$ b. P(x = 0) .0025

5.35. $\lambda = 3/400 = 0.0075; t = 1200; \lambda t = 9$

$$P(x=0) = 0.000123$$

$$P(x>14) = P(x\ge15) = 1 - P(x\le14) = 1 - 0.9585 = 0.0415$$

$$P(x < 9) = P(x \le 8) = 0.4557$$

There is only a 4.15% chance of finding 15 or more errors if the claim is actually true. Students will probably conclude that the error rate is probably higher than 3 per 400.

5.40.
a.
$$\mu = 60 \\ \sigma = 10$$
 $z = \frac{x - \mu}{\sigma} = \frac{60 - 60}{10} = 0.00$; therefore P(x > 60)
= .50
b. $\mu = 60 \\ \sigma = 10$ $z = \frac{x - \mu}{\sigma} = \frac{70 - 60}{10} = 1.00$; therefore P(x ≥ 70) =
.50-.3413 = .1587
c. $\mu = 60 \\ \sigma = 10$ $z = \frac{x - \mu}{\sigma} = \frac{70 - 60}{10} = 1.00$ and $z = \frac{50 - 60}{10} = -1.00$
Probability (50 ≤ x ≤ 70) = .3413 + .3413 = .6826
d. $\mu = 60 \\ \sigma = 10$ $z = \frac{x - \mu}{\sigma} = \frac{40 - 60}{10} = -2.00$; therefore P(x ≤ 40)
= .50 - .4772 = .0228

5.52. P(x>5000) = P(z > (5000 - 4300)/750) = P(z > 0.93) = 0.5 - 0.3238 = 0.1762 P(x < 4000) = P(z < (4000 - 4300)/750) = P(z < -0.40) = 0.5 - 0.1554 = 0.3446

 $\begin{array}{l} P(2500 < x < 4200) = P[(2500 - 4300)/750 < z < (4200 - 4300)/750] = P(-2.40 < z < -0.13) = 0.4918 - 0.0517 = 0.4401 \end{array}$

$$\begin{split} P(x > 5500) &= P(z > (5500 - 4300) / 750) = P(z > 1.6) = 0.5 \\ - 0.4452 &= 0.0548 \end{split}$$

It does appear that the distribution is approximately normally distributed.

b. Students can use Excel's descriptive statistics to determine the mean and standard deviation.

Mean	2.452747253
Standard Error	0.500820671
Median	2.6
Mode	0.9
Standard Deviation4.777524711	
Sample Variance	22.82474237
Kurtosis	1.325755364
Skewness	-0.643107821
Range	29.2
Minimum	-15.5
Maximum	13.7
Sum	223.2
Count	91

Product #1

c. Remember that positive values indicate weight gain so students need to determine the Probability that the weight loss is more than negative 12.

P(x < -12) = P(z < (-12 - 2.4527)/4.7775) = P(z < -3.03) = 0.5 - 0.4988 = 0.0012

d. No, this would not be an appropriate claim. The probability of losing 12 or more pounds is only 0.12%. In fact the average for this plan in a weight gain of 2.45 pounds.

5.69. P(x>50) = (60-50)/(60-20) = 0.25 P(x = 45) = 0; you cannot find the probability of a specific value in a continuous distribution.

P(25 < x < 35) = (35.25)/(60-20) = 0.25

$$P(x<34) = (34-20)/(60-20) = 0.35$$

5.79.

 $\lambda = 12$ /hour = 0.2 per minutes; P(x<4) = 1 - e^{-(.2)(4)} = 1 - 0.4493 = 0.5507

5.85.

As the sample size is increased for a given level of the probability of success, p, the probability distribution becomes more symmetric, or bell-shaped.

5.91. f(x) = 1/(0.80-0.40) = 2.5

b. P(x<0.65) = (0.65 - 0.4)/(0.8 - 0.4) = 0.625

P(x>0.7) = (0.8 - 0.7)/(0.8 - 0.4) = 0.25

$$P(0.6 < x < 0.75) = (0.75 - 0.6)/(0.8 - 0.4) = 0.375$$

(0.8 - 0.4)(.9) = .36 so 0.4 + 0.36 = 0.76 which is the 90th percentile

5.116.

- a. E[x] = np = 200(.20) = 40 bottles
- b. E[x] = np = 100(.80) = 80 bottles
- c. Assuming only dirty bottles will be scrubbed:

E[x] = np = 300(.20)(.\$.03) = \$1.80

d.
$$SD[x] = \sqrt{npq} = \sqrt{100(.20)(.80)} = \sqrt{16} = 4.0$$