> (*'5@ 0*bjbj22 ,<XX
(0008h,\(&z"""=&?&?&?&?&?&?&$8(R*bc&c&""x&j8""=&=&<: ",""05"
$&0&?"R**"((*"(>%,Q$u-c&c&((dlj((KFUPMTerm 041Date: 25/12/2004Mathematical SciencesSTAT 211Duration: 10 minutesQuiz# 7Name:ID#:Section#:Serial#:Show your work in detail and write neatly and eligibly
1. A 95 percent confidence interval estimate will have a margin of error that is approximately + 95 percent of the size of the population mean.
Answer: False
2. Increasing the sample size will result in a point estimate that is closer to the true population value.
Answer: False
3. In estimating a population proportion, the factors that are needed to determine the required sample size are the confidence level, the margin of error and some idea of what the population proportion is.
Answer: True
4. The margin of error is:
a. the largest possible sampling error at a specified level of confidence.
b. the critical value times the standard error of the sampling distribution.
c. Both a and b.
d. the difference between the point estimate and the parameter.
Answer: C
5. An intern working for a food processing company has submitted a report in which he says that the company should use a sample size of 460 to estimate the mean weight of a packaged product. The report further states that the confidence level would be 95 percent and that he has assumed that the population standard deviation for the product weights is 0.3 pounds. However, he did not state anything about the margin of error that was used. Based on the above information, what margin of error is implied by the suggested sample size?
a. + 1.16 pounds approximately.
b. About 0.0008 pounds.
c. Approximately + 0.027 pounds.
d. None of the above.
Answer: C
6. Suppose that an internal report submitted to the managers at a bank in Boston showed that with 95 percent confidence, the proportion of the banks customers who also have accounts at one or more other banks is between .45 and .51. Given this information, what sample size was used to arrive at this estimate?
a. About 344.
b. Approximately 1,066.
c. Just under 700.
d. Cant be determined without more information.
Answer: B
With My Best Wishes
KFUPMTerm 041Date: 25/12/2004Mathematical SciencesSTAT 211Duration: 10 minutesQuiz# 7Name:ID#:Section#: 1 2 4 Serial#:Show your work in detail and write neatly and eligibly
1. All other factors held constant, the higher the confidence level, the closer the point estimate for the population mean will be to the true population mean.
Answer: False
2. In estimating a population mean, increasing the confidence level will result in a higher margin of error for a given sample size.
Answer: True
3. For a given sample size and a given confidence level, the closer p is to 0.1, the greater the margin of error will be.
Answer: False
4. Which of the following statements is true with respect to the confidence level associated with an estimation application?
a. The confidence level is a percentage value between 50 and 100 that corresponds to the percentage of all possible confidence intervals, based on a given sample size, that will contain the true population value.
b. The probability that the confidence interval estimate will contain the true population value.
c. The degree of accuracy associated with the confidence interval estimate.
d. None of the above.
Answer: A
5. A study has indicated that the sample size necessary to estimate the average electricity use by residential customers of a large western utility company is 900 customers. Assuming that the margin of error associated with the estimate will be + 30 watts and the confidence level is stated to be 90 percent, what was the value for the population standard deviation?
a. 265 watts.
b. Approximately 547.1 watts.
c. About 490 watts.
d. Cant be determined without knowing the size of the population.
Answer: B
6. A sample of 250 people resulted in a confidence interval estimate for the proportion of people who believe that the Federal Governments proposed tax increase is justified is between 0.14 and 0.20. Based on this information, what was the confidence level used in this estimation?
a. Approximately 1.59.
b. 95 percent.
c. Approximately 79 percent.
d. Cant be determined without knowing EMBED Equation.3 .
Answer: C
With My Best Wishes
PAGE
7<?@JKLW[]^lsv|ĵĵvdXLh*)CJOJQJaJh?^CJOJQJaJ"hp
h eg5CJOJQJ\aJ"hp
h5CJOJQJ\aJhp
hZaCJOJQJaJhp
hDCJOJQJaJhp
ho8CJOJQJaJhp
hCJOJQJaJhp
he&CJOJQJaJhp
hQiCJOJQJaJhp
hjZCJOJQJaJhp
hCJOJQJaJ !7@Uwfkd$$IflFn
Q)
7
t644
la$$Ifa$gdp
$$Ifa$gdp
$Ifgdp
')UVW_`w$$Ifa$gdp
$$Ifa$gdp
$Ifgdp
fkdu$$IflFn
Q)
7
t644
la`aglv $Ifgdp
fkd$$IflFn
Q)
7
t644
laI W X
}xxxxxxssxxxgd*)gd?^$a$gdp
ykd_$$Ifl\!Q)
t644
la
I W X Y
45KLYZv
AKLM̴̴̴̴̉zhp
h>CJOJQJaJhp
hYCJOJQJaJh@CJOJQJaJh,h?^5CJOJQJaJh*)CJOJQJaJh?^CJOJQJaJ(h*)h?^5B*CJOJQJaJphh,h?^>*CJOJQJaJh,h?^CJOJQJaJ.
%t
6[vAKLMac$a$gdp
&dPgdfgdp
gd?^8^8`gdQ1Macxz{}$%&'ӵӦӦӵvj^O:(hJQhXz5B*CJOJQJaJphh,hXzCJOJQJaJhXzCJOJQJaJhJQCJOJQJaJ"hp
hJQ5CJOJQJ\aJ"hp
h#w5CJOJQJ\aJhfCJOJQJaJhp
hjNCJOJQJaJhp
hDCJOJQJaJhp
hCJOJQJaJhp
h#wCJOJQJaJhp
hP/CJOJQJaJhp
hCJOJQJaJcirwfkd$$IflFn
Q)
7
t644
la$$Ifa$gdf$$Ifa$gdf $Ifgdp
w$$Ifa$gdf$$Ifa$gdf $Ifgdp
fkdm$$IflFn
Q)
7
t644
la $Ifgdp
fkd$$IflFn
Q)
7
t644
la%&\ij}}xxxxxxxsxxxgdsgdXz$a$gdJQykdW$$Ifl\(#Q)
)
t644
la
\ik|~(*"#0:<^_`wxo+j/?
h,hXzCJOJQJUVaJ%jh,hXzCJOJQJUaJh@CJOJQJaJh,hXz>*CJOJQJaJh,hXz5CJOJQJaJhsCJOJQJaJ(hJQhXz5B*CJOJQJaJphh,hXzCJOJQJaJhXzCJOJQJaJ*}~U()0:;_y
$a$gdp
&dPgdfgds^`gdsgdXz
!"&'()*ȳyyuuqhah^9
h^90Jjh^90JUhQdgjhQdgUhp
hmCJOJQJaJhp
hiCJOJQJaJ(hJQhXz5B*CJOJQJaJphh,hXzCJOJQJaJ%jh,hXzCJOJQJUaJ)jh,hXzCJEHOJQJUaJ"#$%&'()*$a$gdp
h]hgdmh]hgd68&`#$gdD^*&P 1h:pP/. A!"#$%s$$If!vh5
575#v
#v7#v:Vl
t65
575s$$If!vh5
575#v
#v7#v:Vl
t65
575s$$If!vh5
575#v
#v7#v:Vl
t65
575$$If!vh55 5 5#v#v #v #v:Vl
t655 5 5/s$$If!vh5
575#v
#v7#v:Vl
t65
575s$$If!vh5
575#v
#v7#v:Vl
t65
575s$$If!vh5
575#v
#v7#v:Vl
t65
575$$If!vh55 5
5)#v#v #v
#v):Vl
t655 5
5)/Dd
J
CA?"2VY3U[
i`54=`!VY3U[
i`5`R!x5O;
PV"V" @A!iҥKd`afg;R>Qb!sdj!u&/kݤas(Oc~Z<[b1m/g@^̑L܊ѷiy2˛ߥ-x?^t"
!"#$%&),-E.0123456789:;<=>?@ABCDRoot Entry
Fu+Data
WordDocument ,<ObjectPoolu_1060105416FOle
CompObjfObjInfo
FMicrosoft Equation 3.0DS EquationEquation.39qmIyI
Oh+'0
8DP
\hpxEquation Native ,1Table/+SummaryInformation(DocumentSummaryInformation8|KFUPMfFUP MathDep. athathNormal.Raid F. Anabosi12dMicrosoft Word 10.0@ِ@8O@8Ⱥ@՜.+,D՜.+,4hp
KFUPMnA
KFUPMTitleH 6>
MTWinEqns
FMicrosoft Word Document
MSWordDocWord.Document.89q@@@NormalCJ_HaJmH sH tH DA@DDefault Paragraph FontVi@VTable Normal :V44
la(k@(No List4 @468Footer
9r .)@.68Page Number4@468Header
9r H"H_ZBalloon TextCJOJQJ^JaJj@3jo
Table Grid7:V0:B@B:*zg Body TextxCJaJ**< !7@UVW_`aglvIWX%t6[vAKLMacir% & \
i
j
}~U
(
)
0:;_y
"#$%&'(+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000p0p000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000p000000000000000000000000000@0@0@0@0@0@0@0@0@000I@00 !7@UVLir% +O900 O900 O900 g@&0Availa Oy00 Oy00 Oy00DT+=n@ &0width charOy00DOy00 O90
0l^O90
0Oy00 Oy00 Oy00 g@&0Availa Oy00 Oy00 Oy00D=n@ &0width chO900\
Oy00D O900 O900 Oy00 Oy00 Oy00 O90/0lI0w M*
U`
c}*)*:!Ob$DIVޘ0MGu8b$D8Vzb$wh
.tyb$r
8G@0(
B
S ?* OLE_LINK1+c+@.AA.5B.BC.Gx++8*urn:schemas-microsoft-com:office:smarttagsdate8*urn:schemas-microsoft-com:office:smarttagsCity9*urn:schemas-microsoft-com:office:smarttagsplace12200425DayMonthYear
&'+%&yFHz
&'+3333333!7alX\%*!8=]
A& *
)
.
;@
&'+
&'+Raid F. AnabosiMathDep.6p;~?FdwX^`o(.
^`hH.
pLp^p`LhH.
@@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PLP^P`LhH.h
^`o(hH.^`o(.
pLp^p`LhH.
@@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PLP^P`LhH.wX6p; : 2#w?pW b
IL?FOsHgFhjI"O%,&e&g'*)Jp)+Q1c6455#868^9o<&?@B>DTDJHcH#}LjN
qNrPzrQ^CRR?TFVjZD^?^q`ZaFcfQdg eg*zghh5hQi'jal+mb5rsJyPyzXz2|pM~/e@",Y0D \|N@Iop
M_ZRJQ_ITzF`0Jo8"XhnmaEp/+,acIcY
< !7@UVW_`aglvWtAKLMcir;_y+s@T~*`@UnknownGz Times New Roman5Symbol3&z ArialCFComic Sans MSIFMonotype Corsiva5&zaTahoma"1hl(/!4d2QHX?nKFUPMMathDep.Raid F. AnabosiCompObjj