> -/,5@ 0bjbj22 ,FXXq88D|\^&6Ys%%%%%%%$'R)b&LUYLL&&L8%L%<*:!","{_}vbM"
$<.&0^&W"RH*8H*"(Dl,H*">,$7&&<<KFUPMTerm 041Date: 18/12/2004Mathematical SciencesSTAT 211Duration: 15 minutesQuiz# 6Name:ID#:Section#:Serial#:Show your work in detail and write neatly and eligibly
1. If the mean age for all students that attend your university is 24.78 years, it would be reasonable to expect that the mean of a sample of students selected from that population would also equal 24.78 years as long at the sampling is done using sound statistical methods.
Answer: False
2. In order for the Central Limit Theorem to apply, the sample size must be at least 30.
Answer: False
3. In order to assume that the sampling distribution for a proportion is approximately normal, the population proportion must be very close to 0.50.
Answer: False
4. The impact on sampling of increasing the sample size is:
a. the potential for extreme sampling error is reduced.
b. the amount of sampling error will be reduced.
c. the sample mean will be closer to the population mean.
d. there is no specific relationship between sample size and sampling error.
Answer: A
5. A claim was recently made on national television that two of every three doctors recommend a particular pain killer. Suppose a random sample of n = 300 doctors revealed that 180 said that they would recommend the painkiller. If the TV claim is correct, what is the probability of 180 or fewer in the sample agreeing?
a. Approximately 0.498
b. About 0.005
c. Approximately 0.345
d. None of the above.
Answer: B
6. The annual income for independent sales representatives in the United States is thought to be highly right-skewed with a mean equal to $144,300 and a standard deviation of $32,450. Given this information, if a sample of 36 independent sales representatives is selected, what is the probability that the mean of the sample will exceed $130,000?
ANSWER:
Even though the population distribution is skewed, the Central Limit Theorem tells us that the sampling distribution will be approximately normally distributed for a sample of n = 36. Further, the mean of the sampling distribution should be equal to the population mean ( EMBED Equation.3 = $144,300) and the standard deviation should be equal to EMBED Equation.3 = EMBED Equation.3 = $5,408.33. Then, we convert the EMBED Equation.3 = $130,000 to a standardized z value using: EMBED Equation.3 . Now, we can go to the standard normal table for z = -2.64 which gives 0.4959. This is the probability of a sample mean between $130,000 and $144,300. To get the probability we are looking for, we add 0.5000 giving 0.9959. Thus, the probability that the sample mean annual income will exceed $130,000 is 0.9959 or almost a sure thing.
With My Best Wishes
KFUPMTerm 041Date: 18/12/2004Mathematical SciencesSTAT 211Duration: 15 minutesQuiz# 6Name:ID#:Section#: 1 2 4 Serial#:Show your work in detail and write neatly and eligibly
1. A smaller sample might provide less sampling error than a larger sample from a given population.
Answer: True
2. A population with a large standard deviation will have a sampling distribution that is more spread out for a given sample size than if the population is less variable.
Answer: True
3. The size standard error of the sample proportion is dependent on the value of the population proportion and the closer the population proportion is to .50, the larger the standard error for a given size sample will be.
Answer: True
4. Which of the following statements is false?
a. Increasing the sample size will reduce the size of the sampling error when the sample mean is used to estimate the population mean.
b. Increasing the sample size will reduce the potential for extreme sampling error.
c. Sampling error can occur when EMBED Equation.3 differs from EMBED Equation.3 due to the fact that the sample was not a perfect reflection of the population.
d. There is no way to prevent sampling error short of taking a census of the entire population.
Answer: A
5. A major textbook publisher has a contract with a printing company. Part of the contract stipulates that no more than 5 percent of the pages should have any type of printing error. Suppose that the company selects a random sample of 400 pages and finds 33 that have an error. If the printer is meeting the standard, what is the probability that a sample would have 33 or more errors?
a. 0.1245
b. About 0.4986
c. Less than 0.01
d. Approximately 0.1250
Answer: C
6. The proportion of parts in an inventory that are outdated and no longer useful is thought to be 0.10. To check this, a random sample of n = 100 parts is selected and 14 are found to be outdated. Based upon this information, what is the probability of 14 or more outdated parts?
ANSWER:
We are interested in finding P(p > 0.14). The sampling distribution for a proportion will be approximately normal as long as both EMBED Equation.3 and EMBED Equation.3 are greater than 5. That applies in this case. The standard deviation for the sampling distribution is given by EMBED Equation.3 . Thus, to find the probability, we standardize the sample proportion as follows: EMBED Equation.3 . Then we can go to the standard normal table for z = 1.33. We get 0.4082. Subtracting this form 0.5000, we get 0.0918, which is the probability we are looking for.
With My Best Wishes
PAGE
!7<?@JLUVW[]^`alsv| ļvd#h^9h5B*CJ\aJphhpyhCJaJhcHCJaJhYCJaJh eg5CJ\aJhq`h5CJ\aJhq`hZaCJaJhq`hhDCJaJho8CJaJhPyCJaJhq`he&CJaJhq`hQiCJaJhq`hjZCJaJhq`hCJaJ% !7@U
_
_
fkd$$IflFn
Q)
7
t644
la $$Ifa$ $$Ifa$$IfqUVW_`
_
$$Ifa$ $$Ifa$$Iffkdu$$IflFn
Q)
7
t644
la`aglv9(C $$Ifa$$Iffkd$$IflFn
Q)
7
t644
la >
L
M
}(m(h(h(h(c(^(^(c(gdgdcHgd$h^h`a$gd<$a$gd egykd_$$Ifl\!Q)
t644
la
>
L
M
N
7;3=>?
YZcst߿߿߿͚߫nW-jh^9hB*CJEHU\aJph,j*?
h^9hB*CJUVaJph)jh^9hB*CJU\aJph h^9hB*CJ\aJphhpyhCJ\aJh+CJaJhpyh5CJ\aJ#h^9h5B*CJ\aJphhpyhCJaJhcHCJaJhpyh^95CJ\aJ"
89t3=>
YZb((((((((((((((((((((((0*(s7$&dP^`a$gd>gd^9gd+^gdgdcHgd,-./]^qr~gP9,j$$*?
h^9hB*CJUVaJph-jh^9hB*CJEHU\aJph,j*?
h^9hB*CJUVaJph-jh^9hB*CJEHU\aJph,jc*?
h^9hB*CJUVaJph)jh^9hB*CJU\aJph-jh^9hB*CJEHU\aJph,j)?
h^9hB*CJUVaJph h^9hB*CJ\aJphrst*,567=>@AUdem³}rjrbr[rSr[rSjr[HbHbhq`hDCJaJhjNCJaJhq`h#whDCJaJhPyCJaJhq`h#wCJaJhP/hP/CJaJhP/CJaJhCJOJQJaJhhCJOJQJaJh>CJaJh^9hYB*CJaJph h^9hB*CJ\aJph)jh^9hB*CJU\aJph-j h^9hB*CJEHU\aJph 5(Y
_
r
_
fkd
$$IflFn
Q)
7
t644
la$$Ifa$gd/$$Ifa$gd/ $Ifgd/$a$ 567?@
_
w$$Ifa$gd/$$Ifa$gd/ $Ifgd/fkd
$$IflFn
Q)
7
t644
la@AGLen9(z Q $IfgdD$$Ifa$gd/ $Ifgd/fkd
$$IflFn
Q)
7
t644
lamno !45°°°}kZ}}H#jG'?
hpyh^9CJUVaJ!jhpyh^9CJEHUaJ#jG'?
hpyh^9CJUVaJjhpyh^9CJUaJhpyh^95CJ\aJh^9CJaJhpyh+5CJ\aJ#h+h^95B*CJ\aJphhpyh^9CJaJhYCJaJh#w5CJ\aJhq`h#w5CJ\aJhq`hDhq`hDCJaJno}(u(p(p(p(p(p(p(p(p(p(gd^9$a$gdP/$a$gd#wykdm$$Ifl\(#Q)
)
t644
la\]qstv((((((((((((((((((((!((Y$a$gdc64$&dPa$gdi^gd^9gd^9567´Ԟ´ԒlU>ll-jh+h^9B*CJEHU\aJph,j%*?
h+h^9B*CJUVaJph)jh+h^9B*CJU\aJph h+h^9B*CJ\aJphhpyh^9CJ\aJhpyh^95CJ\aJh^9CJaJhpyh+5CJ\aJ#h+h^95B*CJ\aJphhpyh^9CJaJjhpyh^9CJUaJ!jhpyh^9CJEHUaJ./BCDE\]pҽ~gPE6hq`hmCJOJQJaJhE-hiCJaJ-jh+h^9B*CJEHU\aJph,j1'*?
h+h^9B*CJUVaJph-jwh+h^9B*CJEHU\aJph,j&*?
h+h^9B*CJUVaJph h+h^9B*CJ\aJph)jh+h^9B*CJU\aJph-jph+h^9B*CJEHU\aJph,j&*?
h+h^9B*CJUVaJphpqrtuwxz{}~hah/
h^90Jjh^90JUh^9jh^9Uhc64hmCJOJQJaJvwyz|}((Y$a$gdc64h]hgdmh]hgd68&`#$gdD^*&P 1h:pP/. A!"#$%s$$If!vh5
575#v
#v7#v:Vl
t65
575s$$If!vh5
575#v
#v7#v:Vl
t65
575s$$If!vh5
575#v
#v7#v:Vl
t65
575$$If!vh55 5 5#v#v #v #v:Vl
t655 5 5/Dd
J
CA?"2="%Z'O$
<`!="%Z'O$Rx5O;
PVbi. xA4RZzbay`afg+R>Sb!d!uߩ!ƘO陈^RaǉUm}.1?|-n-q^#A3k9[1=,#1ReTEϴ#&Dd
J
CA ?"2t`NoKXVd`!\t`NoKXV d*x]1KPϽ/Z N th;9L* ٜ].N;::+C->7c|dt\=a=7Z|w'#Uպ4}?F4N<>K$eXg7|5feIF4(ҫ
k֟#su).3BCO73(i]\QۍA-.Dd
pJ
CA
?"2jJ
ߴl`!djJ
ߴ d2x]Q=KA}3bI!vTvH@ҥ
-6ZXX'X{.,;{3[B@k+2H(٥uezK_(Xj
քXT/"{7.:-f簫wu_k3&[yRSWƩ&oqee8܄'Mhƣ͛ĈwYOZCryuMcوLmHǡ.}ã=ңI`7"MWy8ƜWb_
4%}~Y+>Dd
TJ
CA?"2<so?HA-֊~H`!so?HA-֊~H@ XJx5OKQn3CbⓈ !BbN(bMb/՝z6:C.TaNZf,)&
qEiSM7]翮$)Ȉ|t5RSputL9V[WxsOdX_;o
gKr{Ν&p&%qEVfHx9T.0Dd
J
CA?"2+ ;d_ivn"
`!f+ ;d_iv '~ 4xڍT=hSQ>w&YkB'[^XDP:88h)&C(M)')KqP8*إJ?^}p||yA"'!EȘ0F*3ˎ2X<щL ^ȱ<IR} ڵFI/u}jՋ 2q[WUCn)fHfgTv;霍(>RG$w=a
t7N´u5Ӂ-Ҿם(Iz}[Lq[ʗ=^Tm|<<BWs
7y1}IcJ25{'z;;}핈:"NQw37ϒ,3ϝz:nW_w3]VkM5_uȫD]B3GYa~oH+ސs$$If!vh5
575#v
#v7#v:Vl
t65
575s$$If!vh5
575#v
#v7#v:Vl
t65
575s$$If!vh5
575#v
#v7#v:Vl
t65
575$$If!vh55 5
5)#v#v #v
#v):Vl
t655 5
5)/Dd
TJ
CA
?"2:~|P]@ q=_4J`!~|P]@ q=_4H@ XJ
!"#%&'()*+E.132465789:;><=?@ACBDLKFGHIJMOPQRSTUVWXYZ[\]^_`abcRoot Entry< FP%}v0Data
$WordDocument;,FObjectPool> =E}vP%}v_1059721099"F =E}v$Q}vOle
CompObjfObjInfo %*/47:=>?ABCDEFHIJKLN
FMicrosoft Equation 3.0DS EquationEquation.39qmIyI
FMicrosoft Equation 3.0DS EquationEquation.39qEquation Native ,_1059656594F$Q}v$Q}vOle
CompObj
fObjInfo
Equation Native @_1059724899F$Q}v$Q}vOle
$mIyI
n
FMicrosoft Equation 3.0DS EquationEquation.39q@mIyI
$32,450
36CompObjfObjInfo
Equation Native \_1059724989'F$Q}v$Q}vOle
CompObjfObjInfoEquation Native 0
FMicrosoft Equation 3.0DS EquationEquation.39qtIToI
x
FMicrosoft Equation 3.0DS EquationEquation.39q_1059726372F$Q}v$Q}vOle
CompObjfObjInfomIyI
z=2x"
n
=$130,000"$144,300$32,450
36
="2.64
FMicrosoft Equation 3.0DS EqEquation Native _1059538852F$Q}v$Q}vOle
CompObj fuationEquation.39qmIyI
x
FMicrosoft Equation 3.0DS EquationEquation.39qܣItI
ObjInfo!!Equation Native "0_1059538898 $F$Q}v$Q}vOle
#CompObj#%$fObjInfo&&Equation Native ',_10597268171)F$Q}v$Q}vOle
(CompObj(*)fObjInfo++Equation Native ,0
FMicrosoft Equation 3.0DS EquationEquation.39qmIyI
n
FMicrosoft Equation 3.0DS EquationEquation.39q_1059726984.F$Q}v{_}vOle
-CompObj-/.fObjInfo00$ԣI,I
n(1")
FMicrosoft Equation 3.0DS EquationEquation.39q8ԙIzI
(1")nEquation Native 1@_1059727041,63F{_}v{_}vOle
2CompObj243fObjInfo55Equation Native 6T_10597271538F{_}v{_}vOle
8
FMicrosoft Equation 3.0DS EquationEquation.39qmIyI
z=p"
(1")n
=.14".10
.10(.90)100
=1.33CompObj799fObjInfo:;Equation Native <1TableN\*x5OQ=3c#F#M( :G(|BkDMb͝]7;g&{.Rȅ*IKl%D!H7m˔>53E\fC*p
ζsɂ7
sbb
OWTԼ>~cL0x`Wl bBNzϹNѤ>tӿscrlI"ϔ~)m-Dd
J
CA?"2="%Z'O$
"`!="%Z'O$Rx5O;
PVbi. xA4RZzbay`afg+R>Sb!d!uߩ!ƘO陈^RaǉUm}.1?|-n-q^#A3k9[1=,#1ReTEϴ#Dd
hJ
CA?"2<3nT=;sNU.?e
`!3nT=;sNU.?eZ@`|!x]P
@]I b%vZZZ`QAAYY#d`ۋ ;dU[bSe
Jq$tH)ey5.2[Gl,w@O;MCVtUؘl`#&:mहNgS(hwm90dRYOBFy.Dd
4@J
CA?"2iݐ5EEE
`!=ݐ5EE p xڅAJ`Lڦ BtQ.=TەP0m#xUƙgL PiQ*^.!MVu.xu'}y8z" Tov(KgG趯pJaO/%mk?֝\9b!U"P([t.`HTDd
$J
CA?" 2|QJf]q
`!|QJf]q`HD
PXxڅ=KAߙۜ?@BEXZYXؘ¤Ju (xI Ο`)Vb,DRZ?ZswvsEp杛y%G6(Yb)=H2iJv$br^U9T:v&Z/t43T\MgE7G/fe&Y|B&ёos/|
{$#rr']cY-rtV[]dr=7X-P{GZ;Z2߇o!CgFzY4gz.t[a+'$`t^:|/Wc:Xuoyewe`MԳ#bw4GO~.7Z^Dd
3
J
CA?"
2RAWI`\
`!TRAWI` @ 8 "xڍTkA~eowsw H
Iw`q?oU@ ,BT,`F49?ݱЁ{ߛ7B="A._*Ii:*O/(Oа#b^IºX90<[pbymNPh3-2s0i5:lѰ{=;YvɰGVt_u%3Z%}:49~IdrW*=
]]u5ruumNGV8ezZ]_/Yޓ`;=xm))gSummaryInformation(=@DocumentSummaryInformation8G|CompObjMjOh+'0
8DP
\hpxKFUPMfFUP MathDep. athathNormal.Raid F. Anabosi7idMicrosoft Word 10.0@`4<@8O@%?t@6Z{v3>՜.+,D՜.+,4hp
KFUPMn&
gA
KFUPMTitleH 6>
MTWinEqns
FMicrosoft Word Document
MSWordDocWord.Document.89q@@@NormalCJ_HaJmH sH tH DA@DDefault Paragraph FontVi@VTable Normal :V44
la(k@(No List4 @468Footer
9r .)@.68Page Number4@468Header
9r H@"H_ZBalloon TextCJOJQJ^JaJj@3jo
Table Grid7:V0:B@B:*zg Body TextxCJaJ
F !6 6!6 6
!7@UVW_`aglv>LM89t3=>YZb
567?@AGLeno
\]qstvwyz|}0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000p00p0p0000000000000p00000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000p0p0p00p0p0@0@0@0@0@000p0@0@0@0@0@000p0@0p@0p@000000000000@0@00@00@00 !7@UV
56@AGLenoO900 O900 O900 g@&0Availa Oy00 Oy00 Oy00DT+=n@ &0width charOy00DOy00 O90
0l^O90
0Oy00 Oy00 Oy00 g@&0Availa Oy00 Oy00 Oy00D=n@ &0width chO900\
Oy00D O900\
O900 Oy00 Oy00 Oy00 O90/0lIO90/00w rm5p !U`
5@nv"s , . ] q s 46.BD:::::::::::!Ob$DIVޘ0MGu8b$D8Vzb$wh
.tyb$r
8G@0(
B
S ? OLE_LINK1
<ԫr77
DD
8*urn:schemas-microsoft-com:office:smarttagsdate9*urn:schemas-microsoft-com:office:smarttagsplaceB*urn:schemas-microsoft-com:office:smarttagscountry-region12182004DayMonthYearq;Bv}Y u x
$&+.q::::::::::::::::!7alMQ>BZc
o]pqqRaid F. AnabosiMathDep.6p;~?FdwX^`o(.
^`hH.
pLp^p`LhH.
@@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PLP^P`LhH.h
^`o(hH.^`o(.
pLp^p`LhH.
@@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PLP^P`LhH.wX6p; : xw2#w?pW b
IL?FOsHgFhjI"O%,&e&g'Jp)+c6455#868^9o<&?@B>DTDJHcH#}LjN
qNrPzrQ^CRR?TFVjZD^q`ZaFc eg*zghh5hQi'jal+mb5rsJyPyz2|pM~/@",Y0D \|NIoM_ZR_ITzF`0Jo8"XhnmaEp/+,acIcY
< !7@UVW_`aglv
567?@AGLeno!0@0@UnknownGz Times New Roman5Symbol3&z ArialIFMonotype Corsiva5&zaTahoma"hɍٍ(3>
&3>
&!>4dgg 3QHX(?nKFUPMMathDep.Raid F. Anabosi