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Abstract

This paper seeks ring-theoretic conditions of an integral donkathat reflect in the Clifford
property or Boolean property of its class semigrdi(R), that is, the semigroup of the isomorphy
classes of the nonzero (integral) idealsfofvith the operation induced by multiplication. Precisely,
in Section 3, we characterize integrally closed domains with Boolean class semigroup; in this case,
S(R) identifies with the Boolean semigroup formed of all fractional overring® ofn Section 4,
we investigate Noetherian-like settings where the Clifford and Boolean properti&&Rofcoincide
with (Lipman and Sally—Vasconcelos) stability conditions; a main feature is that the Clifford property
forcest-locally Noetherian domains to be one-dimensional Noetherian domains. Section 5 studies
the transfer of the Clifford and Boolean properties to various pullback constructions. Our results
lead to new families of integral domains with Clifford or Boolean class semigroup, moving therefore
beyond the contexts of integrally closed domains or Noetherian domains.

0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let R be an integral domain. Following [43], we define the class semigroup, of
denotedS(R), to be the (multiplicative Abelian) semigroup of nonzero fractional ideals
modulo its subsemigroup of nonzero principal ideals. The class semigraRigotains,
as subgroups, the class groug &) and, hence, the Picard group Erg of R.
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In 1994, Zanardo and Zannier [43] proved thaRiis an integrally closed domain and
S(R) is a Clifford semigroup theRr is a Priifer domain. The converse is not true since they
showed that the ring of all entire functions in the complex plane (which is Bezout) fails to
have this property. Their main result states that all orders in quadratic fields have Clifford
class semigroup. In 1996, Bazzoni and Salce [14] investigated the structure of the class
semigroup for a valuation domai, stating thatS(V) is a Clifford semigroup. In [10]
and [11], Bazzoni examined the case of Priifer domains of finite character, showing that
these have Clifford class semigroup, too. Recently, she proved the converse in the case of
integrally closed domains [13].

This paper aims at investigating ring-theoretic properties of an integral datnahich
reflect in the Clifford property or the Boolean property®fR). Precisely, in Section 3,
our main theorem asserts thati‘'integrally closed domaiR has Boolean class semigroup
if and only if R is a strongly discrete Bezout domain of finite character if and only if
each nonzero ideal @k is principal in its endomorphism ringOne may view this result
as a satisfactory analogue of both [13, Theorem 4.5] on the Clifford property and [36,
Theorem 4.6] on stability. As a prelude to this, we characterize valuation domains with
Boolean class semigroup, stating that these are exactly the strongly discrete valuation
domains [24]. Section 4 studies Noetherian-like contexts. We proveifh@is az-locally
Noetherian domain, theR has Clifford(resp., Booleapclass semigroup if and only # is
stable(resp., each nonzero ideal &fis principal in its endomorphism rid In particular,
t-locally Noetherian domains (such as Noetherian or strong Mori domains) with Clifford
class semigroup turn out to be one-dimensional Noetherian domains. We also provide a
characterization of Mori domains with Clifford or Boolean class semigroup that links them
to stability, specifically, & Mori domainR is stable(resp., each nonzero ideal & is
principal in its endomorphism ringf and only if R is a one-dimensional Cliffor¢resp.,

Boolg regular domain and the complete integral closurerofs Mori.” Section 5 treats

the possible transfer of the Clifford and Boolean properties to pullbacks. New families
of domains with Clifford or Boolean class semigroup stem from our results. Throughout,
examples are provided to illustrate the scopes and limits of the results.

For the convenience of the reader, we summarize in the following two diagrams (see
p. 622) the relations between the main classes of domains involved in this paper (where
“+4 1C” means that the implication requires the integrally closed hypothesis).

2. Preliminaries

Let us first recall the following definitions. A commutative semigrdufs said to be
a Clifford semigroupf every elementc of S is (von Neumann) regular, i.e., there exists
a € S such thatv?a = x; andS is said to beBooleanif for eachx € S, x = x? (cf. [29]).
The importance of a Clifford semigroupresides in its ability to stand as a disjoint union
of subgroupsG., wheree ranges over the set of idempotent elements,adndG, is the
largest subgroup of with identity equal toe. Often, theG,'s are called the constituent
groups ofS. Clearly, a semigroups is Boolean if and only if the constituent groupsf
are all trivial.
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PID

Strongly Stable (+ IC)

Dedekind Boole regular + IC

Stable + IC

Almost Dedekind

Clifford regular GCD

+IC

Almost Krull

Comp. Integrally Closed

L-stable PVMD

Noetherian

Locally Noetherian Strong Mori

t-Locally Noetherian Mori

As in [13], we say that a domaiR is Clifford regular if the class semigrougs(R) of
R is a Clifford semigroup. By analogy with this, we say that a doniis Boole regular
if the class semigrous(R) of R is a Boolean semigroup. At this point, recall Bazzoni's
recent result [13, Theorem 4.5n integrally closed domaim is Clifford regular if and
only if R is a Prufer domain of finite charactét.e., each nonzero ideal is contained only
in finitely many maximal ideals).
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An ideal of an integral domaim is said to be Lstable(here L stands for Lipman) if
Rl =JU" : I"y= (I : 1), andR is called an Lstable domairif every nonzero ideal of
R is L-stable [3]. Lipman [32] introduced the notion of stability in the specific setting of
one-dimensional commutative semi-local Noetherian rings (to give a characterization of
Arf rings). In Lipman’s contextan integral domairk is L-stable if and only ifR is Boole
regular (cf. [32, Lemma 1.11]).

An ideal I of an integral domairR is said to bestableif I is invertible in (7 : I),
and R is called astable domairprovided each nonzero ideal & is stable [3]. Sally
and Vasconcelos [42] used this concept to settle Bass’' conjecture on one-dimensional
Noetherian rings with finite integral closure. Recall that a stable domain is L-stable [3,
Lemma 2.1]. For recent developments on stability (in settings different than originally
considered), we refer the reader to [3,13,36—38]. Of particular relevance to our study is
Olberding’s result [36, Theorem 4.6] stating tlaatintegrally closed domair is stable if
and only ifR is a strongly discrete Prifer domain of finite character

Throughout, all rings considered are integral domains. We shalll usedenote the
isomorphy class of an idedl

We often will be appealing to the next results without explicit mention.

Lemma2.1.

(1) Let/ be an ideal of an integral domaiR. I is a regular element af(R) if and only
if I =12(1:1% [10, Lemma 1.1].

(2) A stable domain is Clifford reguld3, Proposition 2.2].

(3) A stable domain has finite charact@&8, Theorem 3.3].

(4) Anintegrally closed stable domain is Prifd®, Lemma FJ.

The next lemma establishes the transfer of the Clifford and Boolean properties to two
types of overrings.

Lemma 2.2. Let R be an integral domain an@ an averring ofR. Assume that one of the
following two assumptions holds

(a) B is aflat extension oR,
(b) The conducto(R : B) is nonzero.

If R is a Clifford (resp., Boolgregular domain, then so i8.

Proof. (a) LetJ be an ideal oB. It suffices to show thal € J2(J : J?). Let] := JNR.
By [39, Proposition 1.2(ii)]J = IB. For eachx € (I : I%), xI1? C I implies thatx/%B C
IB. HencexJ2 = x(IB)2 = xI2B CIB=J. Sox € (J : J2) and hencé! : [%) C (J : J?).
Thereforel = 12(1 : 1) C J2(J : J?). Sothat/ C J2(J : J?).

(b) Assume thatR : B) # 0. Letc € (R : B)\0, J an ideal ofB, and/ = cJ. Clearly,
I is an ideal ofR with 12(1 : 1%) = cJ?(J : J?). Hencecd = I = I%(1 : I?) =cJ?(J : J?).
It follows thatJ = J2(J : J?) and hencd is regular inS(B). ConsequentlyB is Clifford
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regular. Now assum® is Boole regular. Here it suffices to notice that/# = gl, then
J2=q) O

Our next result, Proposition 2.3, will play a central role in the development of Sections 3
and 4. It generalizes Zanardo—Zannier’s theorem mentioned in the introduction.

Proposition 2.3. Let R be an integral domain. IR is a Clifford (resp., Boolg regular
domain, thenr is a Prifer(resp., BezoQtdomain, whereR denotes the integral closure
of R.

Proof. The Clifford statement is handled by [41, Proposition 2.1] and [13, Proposi-
tion 2.3]. Next assume thak is a Boole regular domain. By the first par, is a
Prifer domain. Let/ be a finitely generated ideal of. Write J = > :Z  a;R. Let

T :=Rlai,...,a,] and[ = ijlaiT- SinceT is a finitely generated&-module, then
(R:T)+#0.By Lemma 2.2S(T) is Boolean. So there is$ ¢ € K such that/? = cl.
Sincel R = J, thenJ2=cJ. Hence(J : J2) = (J : cJ) =c~1(J : J). SinceJ is invertible

in R, then(J : J) = R, hence

cR=cr: =73 =(J:D:JT)=(R:J),
whencec™1J = J(R: J) = R. SoJ = ¢R and thusR is a Bezout domain. O

Ouir first corollary characterizes almost Krull domains with Clifford or Boolean class
semigroup. Notice that our elementary proof of this result does not appeal to [13, Theorem
4.5], rather it draws on basic properties of almost Krull domains.

Corollary 2.4. Let R be an integral domain. TheR is almost Krull and Clifford(resp.,
Bool@ regular if and only ifR is Dedekindresp., a PID.

Proof. We just need to prove the “only if” assertion. Clearly, for any maximal ideal
of R, Ry inherits the Clifford property fronk. Hence, by Proposition 2.8 is an almost
Dedekind domain. Suppose that there exists a nonzeroidgfak which is not invertible,
i.e, 7171 C R.LetJ :=11~1.ThenJ isapropertrace ideal &, hence/ " = (J : /) =R
(sinceR is completely integrally closed), whence

(J:I)=(J:N):))=R:)=J"t=R.
So
J=J%(J: %) =J?
(since J is regular inS(R)). It follows that J = J" for eachn > 1. SinceR is almost
Dedekind,J = ﬂn>l(J”) = (0), the desired contradiction.

The Boolean statement follows from the Clifford statement and Proposition 2.3,
completing the proof. O
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A brief discussion at the end of Section 3 envisages a possible widening of the scope of
Corollary 2.4 to completely integrally closed domains.

Corollary 2.5. Let R be an integral domain an an indeterminate oveR. The following
statements are equivalent

(i) Risafield
(i) R[X] is Boole regular
(i) R[X] is Clifford regular.

3. Booleregular domains

Clearly, a PID is Boole regular (see definition in Section 2) and a Boole regular domain
is Clifford regular. Our purpose in this section is to characterize Boole regularity for
integrally closed domains. Recall that the study of Clifford regularity—in the integrally
closed context—was initiated in [10,11] and recently achieved in [13].

As a prelude, we characterize valuation domains with Boolean class semigroup, stating
that these are exactly the strongly discrete valuation domains [24]. An integral domain is
strongly discretef it has no nonzero idempotent prime ideals. A stable domain trivially is
strongly discrete.

We shall first find a natural stability condition that best suits the Boolean context. It can
be termed as follows:

Definition 3.1. An integral domainr is called astrongly stable domaiif each nonzero
ideal of R is principal in its endomorphismring ¢ I).

Next, we announce the main result of this section. First note that for any integral
domain R, the setFov(R) of fractional overringsof R is a Boolean semigroup with
identity equal torR.

Theorem 3.2. Let R be an integrally closed domain. The following statements are
equivalent

(i) R is aBoole regular domain
(i) R is a strongly discrete Bezout domain of finite character
(iii) R is a strongly stable domain.

Moreover, when any one condition hold&R) = Fov(R), whereT is identified with
T for each fractional averring’ of R.

The proof involves some preliminary results of independent interest.

Lemma 3.3. Let R be an integral domain. The following statements are equivalent
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(i) R is a stable Boole regular domgin
(i) R is a strongly stable domain.

Proof. (i) = (i) Let I be a nonzero ideal ak. SinceS(R) is Boolean, ther2 = cl for
some O£ ce K. So(I:1% = :cl)y=c"1( :1). SinceRr is stable, then (I : I?) =
(I:1).Hencec™ I =1(1:1% =(I:1)and thereford =c(I: I).

(i) = (i) Clearly, R is stable. Further, let be a nonzeroideal @t. If I =c¢(I : I), then
1? =cl, as desired. O

Lemma 3.4. Let R be an integrally closed domain. The following statements are
equivalent

(i) R is astrongly discrete Clifford regular domain
(i) R is a stable domain.

Proof. By [36] we need only prove (i} (ii). This follows from a combination of [13,
Theorem 4.5] and [36, Theorem 4.6]; however, we offer the following different elementary
proof (which draws on the basic fact that the maximal ideal of a strongly discrete valuation
domain is principal [24, Lemma 2.1]). Assume that (i) holds. By Proposition 2.8

a strongly discrete Prufer domain. Létbe a nonzero ideal oR, T := (I : I), and
J:=I(T : I). Sincel is regularinS(R), thenl = IJ andJ? = J [10, Proposition 2.1(1)].
Suppose that & T. Let Q be a minimal prime ideal of” over J andg = Q N R.
ThenTy = R, is a strongly discrete valuation domain and he@®, = aT for some
0+#a € Q. SinceQ is minimal overJ, thenJ Ty is QTo-primary. SoJTg = (QTg)" for
some integer. SinceJ = J2, thena’ Ty = a? Ty, the desired contradiction. Therefore

J =T and henceR is stable. O

Recall that Bazzoni and Sake [14] proved that valuation domains have always Clifford
class semigroup; next we characterize those among them with Boolean class semigroup.

Lemma 3.5. Let V be a valuation domain. The following assertions are equivalent

(i) V is a Boole regular domain

(i) Vp is adivisorial domain, for each nonzero prime idgabof R;
(iii) V is a stable domain
(iv) V is a strongly discrete valuation domain.

Proof. (i) = (ii) Claim: If S(V) is Boolean, therV is a divisorial domain Indeed, let
I be a nonzero ideal o and Z(V, I) the set of zero divisors oR modulo /. Then
Z(V,I):= Pisaprimeideal oV and(l : I) = Vp. SinceS(V) is Boolean, then there is
0+ c € K such thati? = cI. Two cases are possible.

Casel.I(Vp:I)=Vp. Thenl =aVp for some nonzera € I. So

(V:I)=(V:aVp)=a *(V:Vp)=atP.
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Hence
Li=(V:(V:D)=(V:a*P)=a(V:P).
Now, if P is not a maximal ideal ofV, then (V : P) = (P : P) = Vp; hencel, =
a(V:P)=aVp =1. S0l is divisorial. If P is maximal inV, thenl =aV. Here too,
I is divisorial.
Case2.1(Vp:1) g Vp. SinceVp is aTP-domain [22], then there is a prime ide@lof

V with Q € P such that/ (Vp : I) = QVp. On the other hand;? = cl yields

(Vp:D=(I:1%) = :cl)y=c"1Vp.
So that

OVp=I1(Vp:I)=Ic"tvp=cT1I,
whencel =cQVp. So

Vep=U:1)=(cQVp:cQVp)=(QVp:QVp)=Vp.

It follows that P = Q andl = cQVp = cPVp = cP. Sincel? = ¢I, thenP = P2. Now
P is atrace ideal of/. Then

(V:P)=(P:P)=Vp.
So
(V:D)=(V:cP)y=cXv:P)y=c"1vp.
Therefore
Li=(V:icWp)=c(V:Vp)=cP =1

and hencd is divisorial. Consequentlyy is divisorial, completing the proof of our claim.

Now, let P be any nonzero prime ideal &. By Lemma 2.2,Vp inherits the Boolean
property fromV. By the above claimVp is divisorial, as desired.

(i) = (iii) Let P be a prime ideal oV. By [27, Lemma 5.2],P = PVp = aVp for
somea € P. By [3, Proposition 2.10]V is stable.

(i) = (i) Let I be a nonzero ideal of and P := Z(V, I). By (iii), I is invertible in
(I:1)=Vp.Hencel =aVp forsomea € I.SoI%?=al.HenceS(V) is Boolean.

(iii) < (iv) is handled by [3, Proposition 2.10].0

Notice that Lemma 3.5 gives rise to a large class of Boole regular domains that are
not PIDs. Indeed, any strongly discrete valuation domain of dimensi@does (e.g.,
k[X1x) + YE(X)I[[Y]], wherek is a field andX, Y are indeterminates ovér[24]).
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Lemma 3.6. An integrally closed domair is locally Boole regular if and only iR is a
strongly discrete Priifer domain.

Proof. Combine Proposition 2.3 and Lemma 3.5

Lemma 3.7. An integrally closed domaiR is Boole regular if and only if R is a stable
Bezout domain.

Proof. AssumeR is Boole regular. By Proposition 2.2, is Bezout. Further, a combina-
tion of Lemmas 2.2 and 3.6 ensures tRat a strongly discrete Prifer domain. It turns out
that R is a strongly discrete Clifford domain, hence it is stable by Lemma 3.4. Conversely,
Let I be anideal ofR. ThenT := (I : I) is a Bezout domain. Furthef,is invertible inT,

so itis principal inT to complete the proof. O

Proof of Theorem 3.2. (i) = (ii) Follows from Lemma 3.7 along with the facts that a
stable domain is necessarily strongly discrete and has finite character.

(i) = (i) Follows from [36, Theorem 4.6] (and Lemma 3.7); however, we offer
the following direct proof which draws on Bazzoni’'s study of the groups associated to
idempotents in the class semigroup. Next, assume Rhit a strongly discrete Bezout
domain of finite character. The$(R) =\/ G j, whereJ ranges over the set of idempotent
elements ofS(R). By [11, Theorem 3.1], an elemeritof S(R) is idempotent if and only
if there exists a unique nonzero idempotent fractional ideaf R such that/ = L andL
satisfies one of the following two conditions:

(1) L =T, whereT is a fractional overring oR, or
(2) L=P1Py--- P, T, where eaclP; is a nonzero idempotent prime ideal Bfand T is
a fractional overring oR.

SinceRr is strongly discrete, then there is no nonzero idempotent prime ideals. This rules
out theL’s issued from the second condition. Further, by [12, Proposition 2.2], the group
G7 associated td coincides with the class group @I) for each fractional overrin@’

of R. SinceR is Bezout, then each overrifgof R is Bezout and therefore () is trivial.
Hence the constituent groups&€R) are all trivial, whences (R) is Boolean, as desired.

(i) < (iii) is handled by Lemmas 3.3 and 3.7.

Finally, assume that (i)—(ii) hold. ClearlyS(R) = {T: T e Fov(R)} by [11,
Theorem 3.1] mentioned above. Moreover, due to the uniqueness required by this theorem,
one can identifyl’ with T for eachT e Fov(R), leading therefore to the identification of
S(R) with the Boolean semigroupoy(R), completing the proof of the theoremn

Example3.8.In [33, Construction 1], Loper shaped an example of a generalized Dedekind
domain (hence a strongly discrete Prifer domain [23]) which is not Bezout. Further, (one
can easily check that) it has finite character. Hence it is stable [36] but not Boole regular
(Theorem 3.2). It follows that Theorem 3.2 does not extend to strongly discrete Prifer
domains of finite character (equivalently, integrally closed stable domains).
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Remark 3.9. Theorem 3.2 and its satellite lemmas yield immediate consequences:

(1) Unlike Clifford regularity, Boole regularity is not a local property for the class of
integrally closed domains of finite character.

(2) If Ris an integrally closed domain that is Boole regular (equivalently, strongly stable),
then so is any overring ak.

(3) Stability and strong stability do not coincide in general (e.g., Dedekind domains
that are not PIDs). They do however in integrally closed semilocal contexts (see
Corollary 3.10).

(4) Unlike stability, strong stability is not a local property for the class of domains of finite
character.

(5) If R is a strongly stable domain, then so is its integral clogtire

Moreover, a Bezout domain of finite character need not be Boole regular (e.g., valuation
domains with nonzero idempotent prime ideals). Consequently, in view of the above
discussion, Theorem 3.2 may stand as a satisfactory analogue of both [13, Theorem 4.5]
and [36, Theorem 4.6] for Boole regularity and strong stability, respectively.

In the semilocal context where “Prifer” elevates to “Bezout”, most of the notions in
play collapse, as shown by the next result.

Corollary 3.10. Let R be an integrally closed semilocal domain. The following statements
are equivalent

(i) R isa strongly stable domajn
(i) R is aBoole regular domain
(iii) R is a stable domain
(iv) R is a strongly discrete Clifford regular domain
(v) R is a strongly discrete Prifer domain.

It is worth noticing that from Corollary 3.10 stems a large family of examples of
integrally closed Boole regular domains that are neither PIDs nor strongly discrete
valuation domains (e.g., semilocal strongly discrete Prifer domains of dimeps®n
Recall that the class of strongly discrete Prifer domains of finite character properly
contains the class of integrally closed Boole regular domains.

We close this section with a brief discussion of the completely integrally closed case.
Indeed, by Theorem 3.2 completely integrally closed domain is Boole regular if and
only if it is a PID. This extends the Boolean statement of Corollary 2.4. However, a one-
dimensional completely integrally closed Clifford regular domain (e.g., a non-discrete
rank-one valuation domain) need not be Dedekind. Compare to the Clifford statement of
Corollary 2.4 as well as to the known fact that a one-dimensional integrally closed stable
domain is Dedekind.
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4. Noetherian-like settings

This section investigates the class semigroup for two large classes of Noetherian-like
domains, that isf-locally Noetherian domains and Mori domains. Precisely, we study
conditions under which stability and strong stability characterize Clifford regularity and
Boole regularity, respectively. A main feature of our first theorem is that Clifford regularity
forces the Noetherianity of-locally Noetherian domains. However, the second main
theorem (on Mori domains) may allow one, a priori, to move beyond the context of
Noetherian domains. Unfortunately, we are not able to shape an example that supports
this claim. (See the brief discussion at the end of this section.)

In order to provide some background for the present section, we review some
terminology related to star-operations [26]. LRtbe an integral domain. For a nonzero
fractional ideall of R, setl, :== (I"Y)~%; I, := | J J, whereJ ranges over the set of
finitely generated fractional ideals & contained in/; and I,, := | J(I : J) where the
union is taken over all finitely generated idedlof R with /=1 = R. We say thatl is
divisorial if I, = I; az-idealif I, = I'; and aw-idealif I, = I. Any divisorial ideal is a
w-ideal. Now, R is said to be aMori domainif it satisfies the ascending chain condition
on divisorial ideals [5,6,8,25] andsirong Mori domairnif it satisfies the ascending chain
condition onw-ideals [20,35]. Trivially, a Noetherian domain is strong Mori and a strong
Mori domain is Mori.

Finally, we say thatR is ¢-locally Noetherianf Rj; is Noetherian for each maximal
t-ideal M of R [30]. Recall that strong Mori domains atelocally Noetherian [20,
Theorem 1.9].

Throughout, we shall use Spgt), Max(R), ands-Max(R) to denote the sets of prime
ideals, maximal ideals, and maximaideals, respectively, ak.

We begin by providing necessarydeal-theoretic conditions for Clifford regularity.

Lemma 4.1. Let R be a Clifford regular domain. The# g R for each nonzero proper
ideal I of R. In particular, Max(R) = t-Max(R).

Proof. Deny. Then there exists a nonzero proper finitely generated ideR such that
I,=R.So(I:1)=1"Y=R.Hence(I:1%=({I:I):I)=(R:I)=1"1=R. Sincel
is regular inS(R), thenl = I2(1 : 1%) = I?, a contradiction by [31, Theorem 76] 0

Next, we state our first theorem of this section.

Theorem 4.2. Let R be at-locally Noetherian domain. TheR is Clifford (resp., Boolg
regular if and only ifR is stable(resp., strongly stab)e Moreover, when any one condition
holds, R is either a field or a one-dimensional Noetherian domain.

Proof. Assume thaR is Clifford regular. By Lemma 4.1, we have M@) = r-Max(R).
HenceRr is locally Noetherian. Now, suppose thts not stable. Then there is a nonzero
ideal I of R suchthat/ (T : I) ;Ct T, whereT := (I : I). So there is a maximal idedf of
R containingl such that(I(T : )y ; Ty C Uy Iy). Setd :.=Iy Iy : 11@). By [13,
Proposition 2.9]J = (I(T : I))y. SoJ is a nonzero proper ideal @fy, : Iy). Since
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S(Ry) is Clifford, then Ty is regular inS(Ry). S0 Iy = 12,(Iy : 12) = Iy J. Since

Ry is Noetherian, thery, is a f.g. ideal ofRy, and therefore a f.g. ideal @y, : Iyr).

By [31, Theorem 76]J = () : 1y), the desired contradiction. The converse is handled
by Lemma 2.1.

The Boolean statement follows from the Clifford statement and Lemma 3.3.

Finally, one may assume thatis a stable domain that is not a field. Theras finite
character and hence is locally Noetherian by Lemma 4.1R9e Noetherian by [26,
Lemma 37.3]. Further, we have diR) = 1 by [3, Proposition 2.4], completing the proof
of the theorem. O

Thus, a strong Mori domain that is Clifford regular (equivalently, stable) is necessarily
a Noetherian domain. Here, Clifford regularity forces theoperation to be trivial (see
also [35, Proposition 1.3]). Also noteworthy is that while-locally Noetherian stable
domain is necessarily a one-dimensiohastable domainthe converse does not hold in
general. For instance, consider an almost Dedekind domain which is not Dedekind and
appeal to Corollary 2.4. However, the equivalence holds for Noetherian domains:

Corollary 4.3 ([13, Theorem 2.1] and [3, Proposition 2.4]et R be a Noetherian domain
that is not a field. The following statements are equivalent

(i) R is Clifford regular,
(i) R is stable
(i) R isL-stable withdim(R) = 1.

Corollary 4.4. Let R be a local Noetherian domain such that the extensio R
is maximal, whereR denotes the integral closure @&t. The following statements are
equivalent

(i) R is Boole regular
(i) R is strongly stable
(iii) R is stable andr is a PID.

Proof. In view of Theorem 4.2 and Proposition 2.3, we need only prove the implication
(iii) = (ii). Let I be a nonzeroideal at andT := (I : I). Since hereR is identical to_the
complete integral closure at, thenR € T C R, hence eitheR=T orT =R.If R=T,
then/ is invertible and hence principal iR (sinceRr is local). If T = R, the conclusion is
trivial. O

Corollary 4.4 generates new families of Boole regular domains (i.e., with regard to those
integrally closed provided by Lemma 3.5 and Corollary 3.10).

Example4.5. Letk be afield and( an indeterminate ovér. Let R := k[X2, X3]p\ x2.x3)-
Clearly, R = k[X]g\(x2 x3) is @ PID and the extensiaR C R is maximal. FurtherR is a
Noetherian Warfield domain, hence stable (cf. [15]). Consequéhtfya one-dimensional
non-integrally closed local Noetherian domain that is Boole regular by Corollary 4.4.
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At this point, note that a Noetherian domain that is Clifford regular (equivalently, stable)
need not be Boole regular (equivalently, strongly stable). For instance, consider Dedekind
domains that are not PIDs (cf. Remark 3.9). The following is an example of a non-integrally
closed Noetherian Clifford regular domain that is not Boole regular. It also shows that
Corollary 4.4 fails, in general, wheR is no longer local.

Example 4.6. Under the same notation of the above exampleRlet k[ X2, X3]. Clearly,
R = k[X] and the extensioR C R is maximal. Similarly,R is stable (and hence Clifford
regular). HoweverR is not Boole regular since the ideal:= (X2 — 1, X2 — 1) is not
principal in(/ : I) = R.

We now aim toward a possible characterization of Mori domains with Clifford or
Boolean class semigroup that links them to stability. In what follows, we shalRused
R* to denote the integral closure and complete integral closure, respectively, of an integral
domainR. Suitable background on Mori domains is [6].

Next, we announce our second theorem of this section.

Theorem 4.7. Let R be a Mori domain. The following statements are equivalent

(i) R is a one-dimensional Cliffor(tesp., Bool¢regular domain andR* is Mori;
(i) R is stable(resp., strongly stab)e

The proof requires the following result which provides a classification for Mori stable
domains.

Lemma 4.8. Let R be an integral domain. The following statements are equivalent

(i) R is a Mori stable domain
(i) R hasfinite character an®,, is a DVR or a one-dimensional Mori stable domain for
eachM € Max(R).

Proof. Combine [37, Corollary 2.7] and [25, Theorem 4.18]1

Proof of Theorem 4.7. (i) = (ii) By Proposition 2.3,R is a Priifer domain. It follows
that R* is a Dedekind domain. Further, di®) = 1 implies that dip(R) = 1 by [1,
Theorem 1.10], where digdR) denotes the valuative dimension & Now, let I be
a nonzero proper ideal ak. SetB := (I : I) and J := I(B : I). Suppose that is a
proper ideal of B. SinceR € B C R*, then 1= dim,(R) > dim,(B) > dim(B) > 1,
whence dingB) = 1. Let P be a prime ideal o such that/ € P. So htP = 1. By [8,
Proposition 1.1], there exists a prime idgalof B* = R* such thatQ N B = P. Since
I is regular inS(R), thenl = 12(1 : 1) =12((I : I): 1) = I%(B : 1) = IJ. Hence
B=U:D=U:1))=({:D:J)y=(B:J)=(J:J)(sincel is atrace ideal oB).
So(J:J®)=(J:J):J)=(B:J)= B.HenceJ2(J:J? = J2. Since(R : B) # (0),
B is Clifford regular by Lemma 2.2. So thdt= J2(J : J?) = J?, henceJ R* = J2R* =
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(JR*)2. Since R* is a Noetherian domainj R* = R* by [31, Theorem 76], whence
R*=JR* C PR* C Q, absurd. Thereforg = B and hencd is stable.

The Boolean statement follows from the Clifford statement and Lemma 3.3 to complete
the proof of the forward direction.

(i) = (i) Lemma 4.8 yields diriR) = 1. It remains to show thaR* is Mori,
equivalently, Dedekind. Recall first that every overring of a stable domain is stable [38,
Theorem 5.1]. ThusR is now a one-dimensional integrally closed stable domain. Hence
R is Dedekind and so i®*, completing the proof of the theoremo

It is worth recalling that for a Noetherian domaiwe have: “dim{R) = 1 if and only
if dim(R*) = 1 if and only if R* is Dedekind” (since her&* = R). The same result holds
if R is a Mori domain such thatR : R*) # 0 [8, Corollaries 3.4(1) and 3.5(1)]. Also it was
stated that the “only if” assertion holds for seminormal Mori domains [8, Corollary 3.4(2)].
However, beyond these contexts, the problem remains elusively open. This explains the
cohabitation of “diniR) = 1" and “R* is Mori” hypotheses in Theorem 4.7. In this vein,
we set the following open question.ét R be a local Mori Clifford regular domain. Is
dim(R) = 1if and only if R* is Dedekind?

Next, we announce our third theorem of this section. It partly draws on Theorem 4.7
and treats two well-studied large classes of Mori domains [6]. Recall that a ddtnigin
seminormal ifx € R whenever € K andx?, x3 € R (equivalentlyx” € R for all n > 0).

Theorem 4.9. Let R be a Mori domain. Assume that eith@), (b), or (c) holds

(@) The conducto(R : R*) £ 0;
(b) R is seminormal
(c) The extensiol® C R* has at most one proper intermediate ring.

ThenR is a Clifford (resp., Boolg regular domain if and only ifR is a stable(resp.,
strongly stablgdomain.

The proof of (c) requires the following technical lemma.

Lemma 4.10. Let R be a Clifford regular domain and let be a nonzero ideal oR. If
(I : I) is a Mori domain, ther is a stable ideal ofR.

Proof. AssumeT := (I : I) is a Mori domain. By Lemma 2.27T is Clifford regular.
Suppose thal is not stable. Then := I(T : I) is a proper trace ideal df. Sincel is
regular inS(R), thenl = 12(1 : 19 =1J.SoT = : D= :1J)=(U:1):J) =
(T :J)=( :J). HenceJ, = T. SinceT is Mori, then J; = J, = T (the v- and
t-operations being with respect 19. Lemma 4.1 leads to the desired contradictiom

Proof of Theorem 4.9. We need only prove the “only if” assertion for Clifford regularity.
Let R be a Mori Clifford regular domain that is not a field. By Proposition &3,is a
Prufer domain.
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(a) AssumdR : R*) £ 0. By [4, Corollary 18],R* is a Krull domain and thus Dedekind,
so that diniR*) = 1. It follows that din{R) = 1 by [8, Corollary 3.4]. Theorem 4.7 leads
to the conclusion.

(b) Assume thar is seminormal. According to [5, Theorem 2.8t is a Krull domain
and hence Dedekind. In view of Theorem 4.7, we need only show thgtRdim 1. Let
M be any maximal ideal oR. Clearly, Ry, is a seminormal local Mori Clifford regular
domain. Therefore, we may assume thatis local with maximal idealM. Suppose
that htM = dim(R) > 2. By Lemma 4.1, M is at-ideal of R. Since R is Mori, then
M, = M; = M. HenceR & M~1. By [40, Proposition 1],M is strongly divisorial, so
that7 := (M : M) = M~ is a Mori domain. SinceR is seminormal, by [8, Lemma 2.5]
there is a non-divisorial prim@® of T contracting onM such that htQ > 2. SinceQ
is not divisorial inT, (T : Q) = T by [40, Proposition 1], whenc®; = Q, =T (the¢-
and v-operation being with respect ). Further,T is Clifford regular by Lemma 2.2.
Therefore, Lemma 4.1 yields the desired contradiction. HencéRlim 1, as desired.

(c) Assume thaR € R* has at most one proper intermediate ring. Ldte a nonzero
ideal of R and let/ := 17~1. SinceR € (I : I) € R*, theneithe/ : I)=R*, R=(I : I),
or RS (I:1)G R*. In view of (a) and Lemma 4.10, we need only handle the late
case. Since nowR S (I : 1) € (J : J) = J~1 € R*, then eitherJ : J) = J 1 = R* or
(I:1)=(J:J)=J"L The former case follows from (a). The latter case follows from
Lemma 4.10, sincd ! is a Mori domain by [34, Theorem 11]. Consequently, in all cases
I is stableand soi®. O

One may wonder about the existence of (one-dimensional) Mori stable domains that
are not Noetherian. Indeed, the pullback construction—a main source for non-Noetherian
non-Krull Mori domains—can be of no help in this regard. More precisely7ldie a
domain,M a maximal ideal ofl", K its residue fieldgp : T — K the canonical surjection,
and D a proper subring ok with quotient field gfD) = k. Let R := ¢~ 1(D). ThenR
is a Mori stable domain only iR = T. This follows easily from a combination of [25,
Theorem 4.18] and [37, Theorem 2.6] (i.e., while the former result yiBldsk, the latter,
applied to(Tys, Ry, MRyy), yieldsk = K).

Also, it turns out that non-Noetherian Mori Clifford regular domains cannot stem from
our results on pullbacks (Section 5). Indeed, under the hypotheses of Theorem 5.1(2)
below, Noetherianity and the Mori property coincide for the pullb&ck

5. Pullbacks

The purpose of this section is to characterize Clifford regularity and Boole regularity in
pullback constructions. Our work is motivated by an attempt to generating new families of
integral domains with Clifford or Boolean class semigroup, moving therefore beyond the
classical contexts of integrally closed or Noetherian domains.

Let us fix the notation for the rest of this section. [7Zetbe an integral domainy/ a
maximal ideal of7', K its residue fieldg: T — K the canonical surjectior) a proper
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subring ofK, andk := qf(D). Let R := ¢—1(D) be the pullback issued from the following
diagram of canonical homomorphisms:

R———=D

|,

T k=T/M

First, we wish to shed light on some features imposed by a possible passage of Clifford
regularity to pullbacks. As a matter of fa®,need not be Clifford regular even whénis
a PID withk = K andT isa DVR (e.g.,R :=Z+ XQ[[X]]) or whenD = k andT is local
(see Example 5.3). In the well-studied case wtiiis integrally closed (e.g., a valuation
domain or a polynomial ring over a field), Clifford regularity Bftransfers taR, since here
R = ¢~ 1(D'), whereD' is the integral closure ab in K. Further,R and (henceR have
finite character, which forceB to be semilocal. This follows easily from a combination
of Lemma 2.2, Proposition 2.3, the finite character requirement [13, Theorem 4.5], and the
well-known fact that Spe®) is an amalgamated sum of Sy and Spe¢T’) over the
conductorM [21].

Next, we announce our first theorem of this section. It particularly provides a necessary
and sufficient condition for a pseudo-valuation domain (i.e., PVD) to inherit Clifford or
Boole regularity.

Theorem 5.1. Under the above notation, the following hold

(1) If R is Clifford (resp., Boolgregular, then so ard” and D, and[K : k] < 2.
(2) AssumeD =k andT is a valuation(resp., strongly discrete valuatipdomain.

ThenR is Clifford (resp., Boolgregular if and only if[K : k] = 2.
We need the following technical lemma.

Lemma 5.2. Under the above notation, 18¥ be aD-submodule oK containingD. Then
¢THW W) = (@ W) 17 (W)).

Proof. Let W be aD-module such thab € W g K. Since 1e W, then(W : W) C W.
So¢p L(W: W) ¢ L(W)CT. Now, letx € p~L(W : W). So, for each; € p~1(W),
d(x2) = p(x)p(z) € W. Thenxz € $~1(W) and thereforex € (¢~2(W) : p~1(W)).
Conversely, letr € (¢~ 1(W) : ¢~1(W)). Since 1e ¢~ 1(W), thenx € p~1(W) C T and
x¢~L(W) € ¢~1(W) implies thatg (x)W = ¢ (x¢p~1(W)) C ¢(¢~1(W)) = W. Hence
¢(x) e (W: W), as desired. O

Proof of Theorem 5.1. (1) Assume that® is Clifford (resp., Boole) regular. Then so is
T by Lemma 2.2. Let/ be a nonzero (integral) ideal @ and let/ := ¢~1(J). By [28,
Proposition 6],(1 : 12 = ¢~ 1(J : J?). SoJ = ¢ () = ¢(I13(I : 1%) = J%(J : J?) and
thereforeD is Clifford regular. Now, assume thd is Boole regular. Then there exists
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0+ ¢ € gf(R) such that’?2 = ¢I. SinceJ is nonzero, thed! G1.LetRo= ¢~1(k) be the
pullback issued from the following diagram of canonical homomorphisms:

R————D

Rop———— &k
T ——K=T/M
SinceM ;Ct I C IRy andM is a maximal ideal oRg, thenI Rg = Rg. So

i=n
1= Z a;ixi,
i=1

whereq; € I andx; € Rg for eachi. Hence

i=n
Cc = E ca;pXxj.
i=1

Sinceca; € cI = 1> € R C Ry, thenca;x; € Ro for eachi, hencec € Ro. S0 ¢(c) €
k = qf(D) and J2 = ¢(c)J. It follows that D is Boole regular. It remains to prove that
[K : k] < 2. Notice first thatRg is Clifford by Lemma 2.2.

Stepl. We claim that, for each € K, x? € k + xk. By a contrast way, suppose there
existsx € K such thatc? ¢ k + xk. Let W be thek-vector space denned By := k + xk
and let! be the ideal ofRy given by ! := m¢~1(W) for some nonzere: € M. We first
show that(W : W) =k. Itis clear thatt C (W : W). Since 1le W, then(W : W) C W. Let
z€ (W :W).Writez =a+ bx, wherea, b € k. Sincex € W, thenzx € W. Sobx2+ ax =
zx = c +dx for somec,d € k. If b#0, thenx?2 = b"1(d — a)x + b~1c € k + xk, which
is absurd. S& = 0 and therefore = a € k. Hence(W : W) = k. Now, by Lemma 5.2,

(I:1) = (mp™ 2 (W) :mp~ (W) = (¢~ (W) : 672 (W)) =~ H((W : W)) = 971 (k) = Ro.
So
(1:1%)=(U:D:1)=Ro:D=m Yo7 H(k: W) =m 29710 =m~ M.

Hencel2(I : 1) € mM S I, which is a contradiction sincé is regular inS(Ro). It
follows that for eachx € K\k, [k(x) : k] = 2.

Step2. Suppose thdiK : k] > 3. Consider a free systefd, x, z} of K as ak-vector
space. LetW :=k + xk + zk and I := m¢—1(W) for some nonzere: € M. We wish to
show that(W : W) =k. Lety e (W : W) C W. Write y =a + bx + cz. Sincex € W,
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thenxy = ax + bx2 + czx € W. By the first stepx? = dx + ¢ for somed, e € k. Hence
ax + bdx + be + cxz=xy € W. Socxz =xy — (a + bd)x —be € W. If ¢ #0, then
xz € W, whenceW is aring. SOW = k[x, z] = k(x, z) (Since, by the first step, andz are
algebraic ovek). Hence[W : k] = [k(x, z) : k] = 4 which is absurd. It follows that = 0.
Similarly, using the fact that € W, we obtain thab = 0. Hencey = a € k and therefore
(W : W) = k. Now, as in the first step, we obtain thet(/ : 12) S mM S I, which is a
contradiction. It follows thafK : k] = 2.

(2) Assume thaD = k and[K : k] = 2. LetI be a nonzero (integral) ideal &. If I is
anideal off", sinceT is Clifford (resp., Boole) regular, theif (7 : 1%) = I (resp.,/? = cI).
If 7 is notanideal of’, then asin [9, Theorem 1], itis easy to see thatc¢~1(W), where
kCw g K is ak-vector space. Sind& : k] = 2, thenW = k and thereford = cR, as
desired. O

The following example shows that Theorem 5.1(2) does not hold in general, and hence
nor does the converse of (1).

Example 5.3. Let Z and Q denote the ring of integers and field of rational numbers,
respectively, and leX and Y be indeterminates ove®. Set V := Q(+/2, v3)[[X]],
M :=XQW2, VX1, T :=Q(+2) +MandR :=Q + M.

Both T andR are one-dimensional local Noetherian domains arising from the DYR
with 7T = V and R = T. By Theorem 5.1(2)T is Clifford (actually, Boole) regular,
whereasR is not. More specifically, the isomorphy class of the ideak X (Q + v/2Q +
V3Q + M) is not regular inS(R).

The following is an immediate consequence of Theorem 5.1(2).

Example 5.4. Let n be an integet> 1. Let R be a PVD associated to a hon-Noetherian
valuation (resp., strongly discrete valuation) domain, M) with dim(V) = n and
[V/M : R/M] = 2. ThenR is ann-dimensional local Clifford (resp., Boole) regular
domain that is neither integrally closed nor Noetherian.

Next, we provide new examples of Noetherian Boole (hence Clifford) regular domains
(with regard to Example 4.5).

Example 5.5. Let R be a PVD associated to a DVR/, M) with [V/M : R/M] = 2.
ThenR is a one-dimensional local Noetherian Clifford Boole regular domain that is not
integrally closed.

Now, we introduce a useful class of domains that may help constructing more original
examples for Clifford or Boole regularity. An integral domainis said to beconducive
if the conductor(A : B) is nonzero for each overring of A other than its quotient
field. Examples of conducive domains include pseudo-valuation domains and, in general,
arbitrary pullbacks of the fornk := D + M arising from a valuation domaivi := K + M
[18, Propositions 2.1 and 2.2]. Suitable background on conducive domains is [7,18].
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We are now able to announce our second theorem of this section. It treats Clifford
regularity, for the remaining case ‘= K”, for pullbacks R := ¢~1(D) where D is a
conducive domain.

Theorem 5.6. Under the above notation, suppose tliats a semilocal conducive domain
with quotient fieldk = K and either(a) or (b) holds

(@) T is avaluation domain,
(b) T:=K[X]andR := D + XK[X], whereX is an indeterminate oveX .

ThenR is Clifford regular if and only if so i9D.

The proof of (a) is actually handled by the following technical lemma.

Lemma 5.7. Under the above notation, suppose tifais a valuation domain and for each
D-submoduldV of K containingD, eitherW is aring or (D : W) # 0. ThenR is Clifford
regular if and only if so isD.

Proof. We need only prove the “if” assertions. Assume thats Clifford regular. Let/

be a nonzero (integral) ideal &. If M ;Ct I, thenl = ¢~1(J) for some nonzero ideal

of D. SinceD is Clifford regular, then/?(J : J?) = J. By [28, Proposition 6], it is easy
to see thatf?(I : I%) = I. Assume that C M. If I is an ideal ofT’, we are done (since
T is Clifford regular). If I is not an ideal off’, then as in [9, Theorem 1], it is easy to see
thatl = c¢~1(W), whereW is a D-module withD € W ;Cé K. If Wisaring, then clearly
W2(W : W2) = W and thereford?(I : I2) = I by Lemma5.2. If{ D : W) # (0), thend W

is an (integral) ideal oD for some nonzero elemedtof D. SinceD is Clifford regular,
then(dW)2(dW : (dW)?) = dW so thatW2(W : W2) = W. Thereforel%(I : I?) = I by
Lemma5.2. O

Proof of Theorem 5.6. (a) Follows easily from Lemma 5.7.

(b) Assume thatD is Clifford regular. Let/ be a nonzero ideal oR. ThenI =
f(X)(F + XK[X]), whereF is a nonzerd)-submodule oK such thatf (0)F < D [17,
Proposition 4.12]. SinceD is conducive, thenF is a fractional ideal ofR. Hence
F2(F : F?) = F and thereford (I : 1%) = I, as desired. O

Clearly, Theorems 5.1 and 5.6 generate new families of examples of Clifford regular
domains, as shown by the following construction.

Example 5.8. For every positive integet > 2, there exists an example of an integral
domainR satisfying the following conditions:

(1) dim(R) =n,
(2) R is neither integrally closed nor Noetherian,
(3) R is Clifford regular,
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(4) each overring of is Clifford regular,
(5 R has infinitely many maximal ideals.

Proof. Here is an explicit example. Let> 1 and letX, X;, ..., X,,—1 be indeterminates
overQ. SetVy := Q(+/2) + M1, whereM1 := X1Q(v/2)[ X1](xy); Vi := Vi—1+ M;, where
M; = X;Q(v2X1, ..., Xi—1)[Xilx, foreach 2<i <n—1; M := M1+ --- + My_1;
D:=Q+M; K=Q?2, X1,...,X,—1); andR := D + XK[X]. Clearly,V := V,_1 =
Q(/2) + M is an (n — 1)-dimensional valuation domain with maximal ides [9,
Theorem 2.1]R := V + XK[X], and henceR is ann-dimensional non-integrally closed
non-Noetherian domain [2,9,16,17,26]. Furth®rjs Clifford regular by Theorems 5.1
and 5.6. Now lefS be an overring oR. SinceV € S and qf D) = gf(V) = K, it easily can
be seen thaV C S, henceR < S. Consequentlys is Clifford regular sincer is. Finally,
SpecR) has the following shape [2,9,17]:

XK X|+M

XK[X]|+ M+ -+ Mu_

XK[X]+ M,

XK[X]% .o
(0)

O
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