Question 3(10-Points)

A standard fluorescent tube has a life length that is normally distributed with mean of 7,000 hours and standard deviation of 1,000 hours. A competitor has developed a compact fluorescent lighting system that will fit into incandescent sockets. It claims that the new compact tube has a normally distributed life length with mean 7,500 hours and a standard deviation 1,200 hours.

a. Which fluorescent tube is more likely to have a life length grater than 9,000 hours?

The old fluorescent tube has:
$$N(\mu = 7000)$$
, $\sigma = 1,000$)

The new $= 1000$ $= 1000$ $= 1200$

- For the old one:

$$| p(x) 9000| = p(x - 7000)
 | p(x) 9000 - 7000)
 | p(z) 2) = | - p(z \le 2)
 | - p(z \le 2) = | - 0.9772 = 0.0228$$

- For the new one: =
$$1 - \Phi(2) = 1 - 0.9772 = .0228$$

$$p(X > 9000) = p(Z > 9000 - 7500) = p(Z > 1.25)$$

$$= 1 - \Phi(1.25) = 1 - 0.8944 = 0.1056$$

[]: The new fluorescent tube is more likely to have a life length grater than 9000 hours.

b. Which tube is more likely to have a life length less than 5,000 hours?

For old one:

$$p(X < 5000) = p(Z < \frac{5000 - 7000}{1000})$$

$$= \Phi(-2) = 0.0228$$

For new one:

$$p(x < 5000) = p(Z < 5000 - 7500)$$

$$= \Phi(-2.08)$$

$$= 0.0188$$