Question.1. (6-Points)

A person invested \$2500 at an interest rate of 5.5% annually. How much additional money must be invested at an interest rate of 8% annually so that the total interest is 7% of the total amount invested?

Let
$$x$$
 be the total amount invested We have \$2500 invested at 5.5%, then

 $(x - 2500)$ invested at 8%

 $(0.055)(2500) + (0.08)(x - 2500) = 0.07 \times$? 2

 $137.5 + 0.08 \times -200 = 0.07 \times$? 0

 $0.08 \times -0.07 \times = 200 - 137.5 = 62.5$
 $0.08 \times -0.07 \times = 62.5$
 $0.08 \times -0.07 \times$

Question.2. (6-Points)

A T-shirt manufacturer produces (q) shirts at a total labor cost of 1.3q (in dollars) and at a total material cost of 0.4q (in dollars). If a fixed cost of \$6500 and each shirt sells for \$3.50, how many must be sold to have a profit more than \$11500.

Profit = T.R.
$$-$$
 T.C. > 11500
T.R. $= 3.509$ 30
T.C. $=$ F.C. $+$ V.C. $= 6500 + (1.39 + .49)$ 30
 $= 6500 + 1.79$ > 11500
 $= 6500 > 11500$
 $= 6500 > 11500$
 $= 1.89 > 18000$
 $= 9 1.89 > 18000$
 $= 9 1.89 > 18000$

.. At least 10001 must be sold to have aprofit) 1
more than \$11500

Question.3. (4+4+2 = 10-Points)

a. Find an equation of the line that passes through (1,9) and perpendicular to the line 7y + x = 1 (write it in slope-intercept form)

The line is perpendicular to
$$Y = \frac{1}{7} \times + \frac{1}{7}$$

$$m = \frac{-1}{7} = 7$$

$$(1, 9)$$

The equation:
$$y - y_1 = m(x - x_1)$$

 $y - 9 = 7(x - 1)$
 $y = 7x - 7 + 9$
 $y = 7x + 2$

- b. The demand function for a publisher's line of cookbooks is P = 6 0.003 q where P is the price per unit when q units are demanded, then:
 - I. Find the level of production that will maximize the manufacturer's total revenue.

Tire =
$$pq = (6 - .0039)q$$

$$= 6q - .003q^{2}$$

$$\alpha = -.003 < 0 \rightarrow if has a MAXIDUM Value, b=6$$

$$h = \frac{-b}{20} = \frac{6}{2(-.003)} = \frac{6}{.006} = 1000$$

II. Determine the maximum revenue.

The Maximum revenue =
$$\frac{1}{1000}$$
 = $\frac{1000}{1000}$ - $\frac{1000}{1000}$

Question.4. (8-Points)

A coffee blend worth \$1.6 per pound is to be mixed with a second coffee blend worth \$3.0 per pound to obtain a mixture worth \$2.40 per pound. How many pounds of each blend should be used in order to obtain 105 pounds of the \$2.40 mixture?

Question.5. (2 + 4 + 6 = 12-Points)

- a. A manufacture of a product sells all that is produced. The total revenue is given by: T.R. = 7 q and the total cost T.C. = 6 q + 800 where q represents the number of units produced and sold.
 - I. Find the level of production at the break-even point.

At the break-even point.
T. R. = T.C.
$$\}$$
 (1)
 $79 = 69 + 800$
 $79 - 69 = 800$
 $\Rightarrow 9 = 800$ units $\}$ (1)

II. Find the level of production at the break-even point if the total cost increases by 5%.

The new T.C. = 01d T.C. + .05(01d T.C.)
$$= (69 + 800) + .05(69 + 800)$$

$$= 6.39 + 840$$

At break-even point
$$T R = T.C.$$
 $79 = 6.39 + 840$
 $19 - 5.29 = 840$
 $0.79 = 840$
 $0.79 = 840 = 1200 \text{ units }$

b. Solve the non linear system of equations

$$\begin{cases} x \ y = 4 \cdots (1) \\ 3y = 2x + 2 \dots (2) \end{cases}$$

From (1)
$$y = \frac{1}{x}$$
 and Substitution(2)
 $3(\frac{1}{x}) = 2x + 2 \Rightarrow \frac{12}{x} = 2x + 2$ 2
 $2x^2 + 2x = 12 \quad (+2)$
 $x^2 + x = 6 \Rightarrow x^2 + x - 6 = 0$
 $(x + 3)(x - 2) = 0$ 2
 $x = -3$, $x = 2$
 $x = -3$, $x = 2$

Question.6. (8-Points)

Solve the following system of linear inequalities geometrically

$$\begin{cases} 3x - 2y > 6 & \Rightarrow -2y > 6 - 3 \times (\div - 2) \Rightarrow y < \frac{3}{2} \times -3 - \cdots (1) & 2 \\ 2x - 5y \le 10 & \Rightarrow -5y \le 10 - 2 \times (\div -5) \Rightarrow y \ge \frac{2}{5} \times -2 - \cdots (2) & 2 \end{cases}$$

$$(1) \Rightarrow y = \frac{3}{2} \times -3 \qquad \frac{x}{y} = \frac{2}{3} \times -3 \qquad (1)$$

$$(2) \Rightarrow y = \frac{2}{5} \times -2 \quad \frac{y}{y} + \frac{5}{2} + \frac{5}{0}$$

The Solution region is the intersection region.

