SOLUTIONS

King Fahd University of Petroleum & Minerals Department of Mathematical Science

STAT-211-Term053-I-Quiz #5

Name:

ID:

Serial:

Question One (2+2+2=6-Points)

If the ratio of defective items in a shipment is 25%, a sample of size five is taken randomly with replacement, then:

a. Find the probability that there will be two defective items

$$n = 5$$
, $p = 0.25$, $q = 1 - 0.25 = 0.75$

$$P(X = 2) = C_2^5(0.25)^2(0.75)^3 = 0.2637$$

b. Find the probability that all items are not defective.

$$P(X = 0) = C_0^3 (0.25)^0 (0.75)^5 = 0.2373$$

c. Find the expected number and the standard deviation of defective items in this sample?

I.Mean =
$$E(X) = np = (5)(0.25) = 1.25$$

II.Standard deviation =
$$\sigma = \sqrt{n p q} = \sqrt{(5)(0.25)(0.75)}$$

= $\sqrt{0.9375} = 0.9682$

Question Two (4-Points)

1. The number of a customers in a certain bank follow a Poisson distribution with an average of five customers per hour, then the probability of three customers in 45 minutes is:

a. 0.0235.

b. 0.2067

c.0.8547

d. 0.1755

In a certain group there are 5 management, 4 finance, and 3 economic students, if a sample of size 3 is randomly taken without replacement, then the probability that there are one from each topic is:

a. $\frac{1}{22}$

b. $\frac{7}{11}$ c. $\frac{3}{11}$

 $d. \frac{2}{11}$

3. The yearly incomes for a group of 5,000 professional people is normally distributed with mean $\mu = \$60,000$ and standard deviation $\sigma = \$5000$. Then the number of these people have a yearly income less than \$70,000 is:

а. 488б

2386

c.114

d. 2500

4. If X has exponential distribution with a mean = 0.5, then the value of $P(X \le 0.75)$ is:

a.0.3127

b.0.6873

c.0.2231

d. 0.7769

NOTE: you may use One of the following areas, where

U	l			2.0		1
$P\left(0 < Z < z_{0}\right)$	0.0793	0.1915	0.4332	0.4772	0.4861	0.4878

King Fahd University of Petroleum & Minerals Department of Mathematical Science

STAT-211-Term053-II-Quiz#5

Name:

ID:

Serial:

Question One (2+2+2 = 6-Points)

If the ratio of defective items in a shipment is 20%, a sample of size five is taken randomly with replacement:

a. Find the probability that there will be two defective items

n = 5, p = 0.20, q = 1 - 0.20 = 0.80

$$P(X = 2) = C_2^5 (0.2)^2 (0.8)^3 = 0.2048$$

b. Find the probability that all items are not defective.

$$P(X = 0) = C_0^3 (0.2)^0 (0.8)^5 = 0.32768$$

c. Find the expected number and the standard deviation of the defective items in this sample?

I.Mean = E(X) = np = (5)(0.2) = 1

II. Standard deviation = $\sigma = \sqrt{n p q} = \sqrt{(5)(0.2)(0.8)}$ $=\sqrt{0.8}=0.8944$

Question Two (4-Points)

- 1. The number of a customers in a certain bank follow a Poisson distribution with an average of five customers per hour, then the probability of two customers in 15 minutes is:
 - a. 0.0842

b.0.7762

c. 0.2238

- d. 0.9158
- 2. In a certain group there are 5 management, 4 finance, and 3 economic students, if a sample of size 3 is randomly taken without replacement, then the probability that there are one from each topic is:

b. $\frac{1}{22}$

c. $\frac{2}{11}$

- $\mathbf{d} \cdot \frac{3}{11}$
- 3. The yearly incomes for a group of 5,000 professional people is normally distributed with mean $\mu = \$60,000$ and standard deviation $\sigma = \$5000$. Then the number of these people have a yearly income over \$70,000 is:
 - a. 2500
- 2386

c. 228

- d. 114
- 4. If X has an exponential distribution with $\lambda = 0.75$, then the value of $P(X \le 3)$ is:

a.0.1054

b.0.8946

c.0.0498

d. 0.9502

NOTE: you may use One of the following areas, where

_	. you may asc onco	1 10110	wme arcas	, ** 11010			
	z_0	0.2	0.5	1.5	2.0	2.2	
	$P \left(0 < Z < z_0 \right)$	0.0793	0.1915	0.4332	0.4772	0.4861	0.4878