SOLUTIONS

King Fahd University of Petroleum & Minerals
Department of Mathematical Science

STAT-211-Term 053-I

Quiz #4

Section:

 \mathbb{D} :

Serial:

Question One (3 + 2 = 5-Points)

Name:

Suppose that there are three defective power supplies in a package of 8.If two power supplies are randomly selected one after another without replacement, then:

a. What is the probability of one defective and one good power supply being selected?

Let D: Defective, G: Good so $SS = \{GG, GD, DG, DD\}$

$$P(One\ Defective\ and\ One\ Good) = P\left(DG\right) + P(GD)$$

$$= \left(\frac{3}{8}\right) \left(\frac{5}{7}\right) + \left(\frac{5}{8}\right) \left(\frac{3}{7}\right)$$
$$= \frac{15}{28} = 0.5357$$

b. What is the probability of two non-defective power supplies being selected?

$$P(Two\ non-defective) = P(GG)$$

$$=\left(\frac{5}{8}\right)\left(\frac{4}{7}\right)=\frac{5}{14}=0.3571$$

Question Two (2 + 3 = 5-Points)

Consider the following probability distribution for a random variable X:

χ	- 2	0	2	3	4
P(x)	0.15	0.35	0.20	а	0.1

a. Find the value a

$$\sum P(x) = 1 \Rightarrow 0.15 + 0.35 + 0.20 + a + 0.1 = 1$$

 $0.80 + a = 1 \Rightarrow a = 1 - 0.8 = 0.2$

Find the mean for the random variable X

The mean =
$$E(X) = \sum x \ p(x)$$

= $(-2)(0.15) + (0)(0.35) + (2)(0.2) + (3)(0.2) + (4)(0.1)$
= $-0.30 + 0 + 0.40 + 0.60 + 0.40$
= 1.10

SOLUITIONS

King Fahd University of Petroleum & Minerals Department of Mathematical Science

STAT-211-Term 053-II

Quiz #4

 \mathbb{D} :

Section:

Serial:

Name:

Question One (3 + 2 = 5-Points)

A small town has two ambulances. Records indicate that the first ambulance is in service 65% of the time and the second one is in service 50% of the time.

a. What is the probability that when an ambulance is needed, one will be available?

Let E_1 : The first ambulance is in service $P(E_1) = 0.65$

 E_2 : The second ambulance is in service $P(E_2) = 0.50$

$$P(\text{one will be avilable}) = P(E_1 \cap \overline{E_2}) + P(\overline{E_1} \cap E_2)$$

By Independence
$$\Rightarrow = P(E_1) P(\overline{E_2}) + P(\overline{E_1}) P(E_2)$$

= $(0.65)(1-0.5)+(1-0.65)(0.50)$
= $0.325 + 0.175 = 0.50$

What is the probability that at least one ambulance will be available?

$$P(At \ least \ one \ will \ be \ av \ ilable) = P(E \cup E \ 1) = P(E \ 1) + P(E \ 2) - P(E \cap E \ 1) = 0.65 + 0.50 - (0.65) (0.50)$$

$$= 0.825$$

Question Two (2 + 3 = 5-Points)

Consider the following probability distribution for a random variable X,

х	- 1	0	1	3	4
P(x)	0.25	0.1	0.3	k	0.2

a. Find the value of k

$$\sum P(x) = 1 \Rightarrow 0.25 + 0.10 + 0.30 + k + 0.2 = 1$$

 $0.85 + k = 1 \Rightarrow k = 1 - 0.85 = 0.15$

b. Find the expected value of X

The mean =
$$E(X) = \sum x \ p(x)$$

= $(-1)(0.25)+(0)(0.1)+(1)(0.3)+(3)(0.15)+(4)(0.2)$
= $-0.25+0+0.30+0.45+0.80$
= 1.30