Question 3:(7 Points)

a. Find the present value of an annuity of \$250 due at the beginning of each year for three years, and \$550 due thereafter at the beginning of each year for four years. If the interest rate is 5% compounded annually?(3 points)

Solution: Method 1:
$$W = .05$$
 0
 1
 2
 3
 4
 5
 6
 7
 250
 250
 250
 250
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 550
 5

b. In 12 years a \$42,000 bus will have a salvage value 20% of its cost. A new bus at that time is expected to sell for \$48,000. In order to provide funds for the difference between the replacement cost and the salvage value, a sinking fund is setup into which equal payments are placed at the end of each year. If the fund earns 6% compounded annually, how much should each payment be? (4 points)

Solution: Time =
$$n = 12$$
, $r = .06$, $R = ?$

Salvage Valve = $(0.20)(42000) = $8,400$? ①

The amount needed after 12 years = $48000 - 8400$

$$= 39,600 = $3$$

$$S = R. S \overline{n} r \Rightarrow R = \frac{S}{S \overline{n} r} = \frac{39600}{S \overline{n} 1.06}$$

$$\approx \frac{39600}{16.869941} = $2,347.37$$
 } ①

$$R = \frac{S}{S \overline{n} r} \text{ where } S \overline{n} r = \frac{(1+r)^n - 1}{r} = \frac{(1.06)^2 - 1}{.06}$$

$$= 16.869942$$

$$\Rightarrow R = \frac{39,600}{16.869942} = $2347.37$$