SOLUTIONS			
King Fahd University of Petroleum & Minerals			
Department of Mathematics & Statistics			
Math101-Term072-Quiz1			
Name:	ID:	Sec.:	Serial:
Q.1. Find a number δ such that $ f(x)-5 < 0.1$ whenever $0 < x-1 < \delta$, where $f(x) = 2x + 3$			
$ 2x + 3 - 5 < 0.1$ whenever $0 < x - 1 < \delta$			
$\left 2x - 2 \right < 0.1$ whenever 0	$< x-1 < \delta$		
2 x - 1 < 0.1 whenever 0	$ x-1 < \delta$		
$ x - 1 < \frac{0.1}{2} = 0.05$ when	ever $0 < x-1 < \delta$		
Choose $\delta = 0.05$	(4	4-Points)	

Q2.Let
$$f(x) = \begin{cases} a+bx, & \text{if } x > 2\\ 3, & \text{, if } x = 2 \\ b-ax^2, & \text{if } x < 2 \end{cases}$$
 Determine the values of constants a and b so that $f(x)$ is

continuous at x = 2

$$f(x)$$
 is continuous at $x = 2 \Rightarrow \lim_{x \to 2^{-}} f(x)$ exist $\Rightarrow \lim_{x \to 2^{-}} f(x) = f(2)$ and $\lim_{x \to 2^{+}} f(x) = f(2)$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (b - a x^{2}) = b - 4a = 3 \dots (1)$$

 $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} (a + b \ x) = a - 2b = 3 \dots (2)$ From equation (1)b = 3 + 4a and substitute it in equation (2) to get $a + 2(3 + 4a) = 3 \Rightarrow a + 6 + 8a = 3 \Rightarrow 9a = -3 \Rightarrow a = -\frac{1}{3}$ $b = 3 + 4\left(-\frac{1}{3}\right) = 3 - \frac{4}{3} = \frac{5}{3}$ (6-Points)

Q.3consider the following graph of the function y = f(x). Answer the following: (5+2+3=10-Points)

a. $\lim_{x \to 2^{-}} f(x) = 4$ **b.** $\lim_{x \to 2^{+}} f(x) = 4$ **c.** $\lim_{x \to 3^{-}} f(x) = 9$ **d.** f(-2) = -5 **e.** f(3) = 9f. The discontinuity points are:

When
$$x = -2$$
 and $x = 3$

g. Which one of the discontinuity points is **removable**? Why?

x = -2, is a removable discontinuity point because $\lim_{x \to -2} f(x) = 4$ (exits)

