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Abstract

The solitary wave solutions of various Boussinesq systems of equations are
obtained by using the decomposition method. The solutions were calculated
in the form of a convergent power series with easily computable components.
The convergence of the method is illustrated numerically for the system with
various initial values. The present algorithm performs extremely well in terms
of accuracy and simplicity.
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1 Introduction

In this paper, we studied solitary wave solutions for a general Boussinesq (gBQ) type
fluid model both analytically and numerically. There are many types of equation
form of the Boussinesq equation, one of them is given by

ut + vx + uux = c1uxxt, vt + (uv)x = c2uxxx, (1)

where c1 and c2 are real constants. This system which generalizes the classical
Boussinesq equations was derived by Sachs [1] to describe small amplitude long
waves in a water channel.

Exact traveling-wave solutions of the system (1) have been derived by Fan [2]. In
this paper we will focus on finding analytical approximate and exact traveling wave
solution of the system (1) using the Adomian decomposition method [3, 4]. The
method provides the solutions in the form of a series with easily computable terms.
The accuracy and rapid convergence of the solutions are demonstrated through
some numerical examples.
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2 Outline of the decomposition method

To solve the nonlinear Boussinesq equations (1) we write the system of the partial
differential equations (1) in an operator form

Ltu+ vx +M(u, ux) = c1Lx(ut), Ltv + (N(u, v))x = c2Lx(ux), (2)

where the notation Lt = ∂
∂t and Lx = ∂2

∂x2
symbolizes the linear differential op-

erators, the notations M(u, ux) = uux and N(u, v) = uv symbolize the nonlinear
operators. Applying the inverse operator L−1t =

R t
0 (·) dt to the system (2) yields

u(x, t) = g1(x)− L−1t [vx +M(u, ux)− c1Lx(ut)] ,
v(x, t) = g2(x)− L−1t [(N(u, v))x − c2Lx(ux)] , (3)

where g1(x) = u(x, 0) and g2(x) = v(x, 0) are given functions for initial conditions.
The Adomian decomposition method [3]—[5] assumes an infinite series solution for
unknown functions u(x, t) and v(x, t) in the form

u(x, t) =
∞X
n=0

un(x, t), v(x, t) =
∞X
n=0

vn(x, t), (4)

and the nonlinear operators M(u, ux) = uux and N(u, v) = uv by the infinite series
of Adomian polynomials given by

M(u, ux) =
∞X
n=0

An, N(u, v) =
∞X
n=0

Bn, (5)

where An and Bn are the appropriate Adomian’s polynomials which are generated
according to algorithms determined in Refs. [3]—[6]. For the nonlinear operator
M(u, ux) these polynomials can be defined by

An(u0, . . . , un; (u0)x, . . . , (un)x) =
1

n!

"
dn

dλn
M

Ã
nX

k=0

λkuk,
nX

k=0

λk(uk)x

!#
λ=0

,(6)

Bn(u0, . . . , un; v0, . . . , vn) =
1

n!

"
dn

dλn
N

Ã
nX

k=0

λkuk,
nX

k=0

λkvk

!#
λ=0

, (7)

n ≥ 0.
This formula is easy to be set in a computer code to get as many polynomial as
we need in the calculation of the numerical as well as explicit solutions. For a
detailed explanation of Adomian decomposition method and other general formula
of Adomian polynomials, we refer the reader to [3, 6].
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Following the modified decomposition method [5], the series (4) are constructed
by the following recursive relations

u0(x, t) = 0.0, u1(x, t) = g1(x)− L−1t [(v0)x +A0 − c1Lx((u0)t)] ,
un+1(x, t) = −L−1t [(vn)x +An − c1Lx((un)t)] ,

v0(x, t) = 0.0, v0(x, t) = g2(x)− L−1t [(B0)x − c2Lx((u0)x)] ,
vn+1(x, t) = −L−1t [(Bn)x − c2Lx((un)x)] , (8)

where n ≥ 1, the functions g1(x) and g2(x) are taken from the initial conditions.
It is worth noting that once the zero components u0 and v0 are defined, then the
remaining components un and vn, n ≥ 1, can be completely determined so that
each pair of terms are computed by using the previous terms. As a result, the
components u0, u1, u2, . . . and v0, v1, v2, . . . are identified and the series solutions
thus entirely determined. However, in many cases the exact solution in a closed
form may be obtained.

For numerical comparisons purposes, we construct the solution u(x, t) and v(x, t)

lim
n→∞φn = u(x, t), lim

n→∞ϕn = v(x, t), (9)

where φn(x, t) =
Pn

k=0 uk(x, t), ϕn(x, t) =
Pn

k=0 vk(x, t), n ≥ 0, and the recur-
rence relation is given as in (8). Moreover, the convergence of the decomposition
series has been investigated by several authors. The theoretical treatment of con-
vergence of the decomposition method has been considered in the literature [7]—[13].
They obtained some results about the speed of convergence of this method. In a
recent work of Ngarhasta et al. [14] they have proposed a new approach of con-
vergence of the decomposition series. The authors have given a new condition for
obtaining convergence of the decomposition series to the classical presentation of
the ADM in [14]. In this work, we demonstrate how approximate solutions of the
gBQ equation system are close to the corresponding exact solutions. They obtained
some results about the speed of convergence of this method. To give a clear overview
of the methodology, some examples will be discussed in the following section.

3 Implementation of the method

In this section we will be concerned with the traveling wave solutions of the gBQ
equation (1) with the initial conditions

u(x, 0) = a0 −K1 tanh
2(Rx), v(x, 0) = b0 −K2 tanh

2(Rx), (10)

where

a0 =
a22 + 8c1ba

2
2 + 72c1c2

12c1a2
, b0 =

4(9c22 − bc1a
2
2)

a22
, K1 = a2b, K2 = 6c2b, R =

√−b,
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b and a2 being arbitrary constants.
Using (8) with (6)—(7) for the functional coupled equation (1) and initial con-

ditions (10) gives

u0 = 0.0, v0 = 0.0, u1 = a0 −K1 tanh
2(Rx), v1 = b0 −K2 tanh

2(Rx), (11)

u2 = −2K2R t sech2(Rx) tanh(Rx), (12)

v2 = c2t
¡
16K1R

3sech(Rx)4 tanh(Rx)− 8K1R
3sech2(Rx) tanh3(Rx)

¢
, (13)

u3 = c2K1R
4 t2 (33− 26 cosh(2Rx) + cosh(4Rx)) sech6(Rx)

+R t [−a0K1 −K2
1 + 20 c1K2R

2 − a0K1 cosh(2Rx) +K2
1 cosh(2Rx)

−4 c1K2R
2 cosh(2Rx)] sech4(Rx) tanh(Rx), (14)

v3 = c2K2R
4 t2 (33− 26 cosh(2Rx) + cosh(4Rx)) sech6(Rx)

−R t [b0K1 + a0K2 + 2K1K2 + b0K1 cosh(2Rx) + a0K2 cosh(2Rx)

−2K1K2 cosh(2Rx)]sech4(Rx) tanh(Rx), (15)

and so on, the other components of the decomposition series (4) can be determined
in a similar way. Substituting (11)—(15) into (4) and using the decomposition series
(4) which is a Taylor series, we obtain the closed form solutions

u(x, t) = a0 −K1 tanh
2 (R (x− c t)) , v(x, t) = b0 −K2 tanh

2 (R (x− c t)) , (16)

where

a0 =
a22 + 8c1ba

2
2 + 72c1c2

12c1a2
, b0 =

4(9c22 − bc1a
2
2)

a22
, K1 = a2b, K2 = 6c2b, c =

a2
12c1

,

R =
√−b, b and a2 being arbitrary constants. These solutions are constructed by

Fan [2].

4 Numerical results and discussions

For numerical comparisons purposes, we construct the general form of the solution
u(x, t) and v(x, t) by using formulae (9). In order to see the accuracy of the solutions
by using the decomposition method, we consider various values of the wave speed
c.

Furthermore, as the decomposition method does not require discretization of
the variables, i.e., time and space, it is not effected by computation roundoff errors
and one is not faced with the necessity of large computer memory and time. The
accuracy of the decomposition method for the gBQ equation is controllable and
the absolute errors are very small which are given in Table 1. It shows that the
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implemented method achieves an accuracy of minimum six and maximum seven
significant figures for the Eq. (1) for initial conditions (10) using a reasonable small
value of n in the formulae (8) with (6)—(7). The absolute values of the differences
b between the numerical exact solutions and the approximate solutions obtained as
n = 4 by using the formulae (10) are given in Table 1 for the Eq. (1) for the initial
conditions (10). There is no visible difference in the two solutions if the values of
b are small. This is the nature of the series method. It is also evident that when
more terms for the decomposition series are computed, the numerical results are
getting much closer to the corresponding exact solutions with the initial conditions
(10) of the Eq. (1).

|u− φn|
ti|xi 0.1 0.2 0.3 0.4 0.5
0.1 8.51262E-08 3.16170E-07 6.93114E-07 1.21594E-06 1.88464E-06
0.2 9.72753E-08 3.40433E-07 7.29944E-07 1.26426E-06 1.94486E-06
0.3 1.09417E-07 3.64670E-07 7.65707E-07 1.31248E-06 2.00493E-06
0.4 1.21549E-07 3.88876E-07 8.01913E-07 1.36059E-06 2.06484E-06
0.5 1.33672E-07 4.13052E-07 8.38055E-07 1.40859E-06 2.12458E-06

|v − ϕn|
0.1 5.10934E-07 1.89774E-06 4.16041E-06 7.29896E-06 1.13134E-05
0.2 5.83874E-07 2.04351E-06 4.37892E-06 7.59009E-06 1.16770E-05
0.3 6.56767E-07 2.18912E-06 4.59707E-06 7.88061E-06 1.20397E-05
0.4 7.29609E-07 2.33456E-06 4.81486E-06 8.17050E-06 1.24015E-05
0.5 8.02391E-07 2.47981E-06 5.03226E-06 8.45974E-06 1.27632E-05

Table 1. The numerical results for φn(x, t) and ϕn(x, t) in comparison with the
analytical solution (16) for u(x, t) and v(x, t) when c1 = 0.05, c2 = 0.05, b1 =
−0.001 and a2 = 0.05 for the traveling wave solution of the Eqn. (1).

Numerical approximations show a high degree of accuracy and in most cases
φn and ϕn, the n-term approximations for u and v, respectively, are accurate for
quite low values of n. The numerical results obtained justify the advantage of this
methodology. It is evident that the overall errors can be made smaller by adding
new terms of the decomposition series.

Furthermore, as the decomposition method does not require discretization of the
variables, i.e., time and space, it is not effected by computation roundoff errors and
one is not faced with necessity of large computer memory and time. The accuracy
of the decomposition method for the coupled nonlinear equations controllable and
absolute errors is very small with the present choice of t and x.
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5 Conclusions

In conclusion, the Adomian decomposition method was used for finding the ex-
act and approximate traveling-waves solutions of the gBQ equation. The method
can be also easily extended to other nonlinear evaluation equations, with the aid
of Mathematica (or Matlab, Maple, Reduce, etc.), the course of solving nonlinear
evaluation equations can be carried out in computer. One coupled nonlinear equa-
tion with initial conditions is discussed as a demonstration. It may be concluded
that the Adomian methodology is very powerful and efficient technique in finding
exact solutions for wide classes of problems. It is also worth noting to point out
that the advantage of the decomposition methodology is the fast convergence of the
solutions.

Clearly, the series solution methodology can also be applied to many other
nonlinear problems. However, as we have seen in the previous sections, the decom-
position method does not require linearization or perturbation for obtaining closed
form solutions. Additionally, it does not need any discretization to get numerical
solutions. Clearly, the series solution methodology can be applied to various types
of linear or nonlinear ordinary and partial differential equations [15]—[21].
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