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Abstract

Suitable periodic boundary conditions for the functional differential equa-
tion ẋ(t) = f(t, x, xt) are conditions of the form x0(θ) = x2π(θ). In this talk
we use the notion of upper and lower solutions combined with monotone itera-
tive method to prove the existence of solutions of this periodic boundary value
problem.

AMS Subject Classification: 34K10, 34K15.

1 Introduction

Let us consider the boundary value problem(
ẋ(t) = f(t, x(t), xt),

x0(θ) = x2π(θ), θ ∈ [−r, 0], (1)

where f : I×R×C → R is a continuous function, I = [0, 2π] and C = C ([−r , 0 ],R)
is the space of continuous real valued functions defined on [−r, 0]. The set C is a
Banach space with supremum norm kφk = supt∈[−r,0] |φ(t)|.

To our knowledge none of the methods used previously (see for example [1, 3]
and the references therein) works for such boundary value problems. The aim of
this talk is to give an approach based on iterative methods [2] combined with the
method of upper and lower solutions.

Definition 1.1 α(t) is called a lower solution of (1) if(
α̇(t) ≤ f(t, α(t), αt), t ∈ [0, 2π],
α(θ) = α2π(θ), ∀θ ∈ [−r, 0].

725



726 M. Yebdri

β(t) is called an upper solution of (1) if(
β̇(t) ≥ f(t, β(t), βt), t ∈ [0, 2π],
β(θ) = β2π(θ), ∀θ ∈ [−r, 0].

2 Main Result

Let us make the following assumption on f :

(H) f(t, u, φ) +Mu is monotone nondecreasing.

Let α and β be respectively a lower and an upper solution of (1) such that the
assumption (H) is fulfilled. Define the sequence (un)n≥0 on C([−r, 2π],R) by

u0 = α,

u̇n+1 +Mun+1 = f(t, un, un,t) +Mun,

un+1,0(θ) = un,2π(θ), θ ∈ [−r, 0].

Since f is continuous and by setting gn(t) = f(t, un, un,t)+Mun, we can see by
recurrence that the sequence (un) is well defined.

Remark 2.1 We point out that the sequence (un) is different from the sequences
used in [1, 3] and [4], since the first boundary condition (or the initial condition)
un+1,0 is expressed in term of the previous term of the sequence at the second
boundary condition un,2π, i.e., un+1,0(θ) = un,2π(θ) θ ∈ [−r, 0].

If α and β are a lower and an upper solution of (1) such that the assumption
(H) is fullfilled, then the sequence (un) has the following property:

Proposition 2.2 For all k ∈ N one has

α(t) ≤ uk(t) ≤ β(t).

Proof. We prove that uk(t) ≤ β(t) ∀k ∈ N, the proof for the left inequality is
analogous. We proceed by recurrence.

For k = 0 one has u0(t) = α(t) ≤ β(t) ∀t ∈ [−r, 2π].
Now we suppose that uk(t) ≤ β(t) and show that uk+1(t) ≤ β(t) ∀t ∈ [−r, 2π].

Since
u̇k+1 +Muk+1 = f(t, uk, uk,t) +Muk

and
β̇ +Mβ ≥ f(t, β, βt) +Mβ,
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one has

(uk+1 − β)
0
+M(uk+1 − β) ≤ [f(t, uk, uk,t) +Muk]− [f(t, β, βt) +Mβ]

= f(t, uk, uk,t)− f(t, β, βt) +M(uk − β).

By application of (H) we obtain

(uk+1 − β)
0
+M(uk+1 − β) ≤ 0.

Moreover,
uk+1(0)− β(0) = uk(2π)− β(2π) ≤ 0.

Then we have a problem of the form(
ẇ +Mw ≤ 0 ∀t ∈]0, 2π[,
w(0) ≤ 0,

where w = uk+1 − β. Hence the question is to prove that w(t) ≤ 0 whenever
t ∈ [0, 2π]. To this end one has

(eMtw(t))0 = MeMtw(t) + eMtẇ(t)

= eMt[ẇ(t) +Mw(t)]

≤ 0.
By integrating the term (eMtw(t))0 ≤ 0 we get

eMtw(t)− e0w(0) ≤ 0,

eMtw(t) ≤ w(0),

eMtw(t) ≤ 0,

which is equivalent to w ≤ 0. This ends the proof since w = uk+1 − β.

Theorem 2.3 The sequence (uk)k∈N has a convergent subsequence, which con-
verges to a solution u of the problem (1), i.e., u ∈ C([−r, 2π],R) ∩ C1([0, 2π],R)
and u0(θ) = u2π(θ).

Proof. Since α ≤ uk ≤ β, one has

kukk ≤ kαk+ kβk ≤ c.

In addition,

u̇k +Muk = f(t, uk−1, uk−1,t) +Muk−1 and
ku̇kk ≤ Mkukk+ sup

α≤u≤β
t∈[0,2π]

kf(t, uk−1, uk−1,t)k+Mkuk−1k,

ku̇kk ≤ K.
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Hence the sequence (uk) is equicontinuous and since it is bounded, by the Ascoli-
Arzela theorem the sequence (uk) has a convergent subsequence.

From
u̇n+1 +Mun+1 = f(t, un, un,t) +Mun,

un+1,0(θ) = un,2π(θ), θ ∈ [−r, 0],
an integration yields

un+1(t)− un+1(0) =

Z t

0
f(s, un, un,s) ds+M

Z t

0
(un(s)− un+1(s)) ds.

Since |f(t, uk−1, uk−1,t)| ≤ sup
α≤v≤β
t∈[0,2π]

{|f(t, v, vt)|} ≤ L, L is a constant, by the dom-

inated convergence theorem of Lebesgue we get

u(t)− u(0) =

Z t

0
f(s, u, us) ds.

In addition, one has
u0(θ) = u2π(θ) ∀θ[−r, 0].

This ends the proof.

3 Application

As an application we consider the following functional differential equation

ẋ(t) = g(t, xt)−Kx(t)

with g continuous and K is a positive constant. Let m(α) = inf
0≤t≤2π

g(t, ᾱ) and

M(α) = sup
0≤t≤2π

g(t, ᾱ), where ᾱ is the constant function equal to α. Let us make

the hypotheses m0 = lim sup
α→−∞

|m(α)|
|α| < +∞ and M0 = lim sup

α→+∞
M(α)
α < +∞.

Proposition 3.1 If the function g(t, ·) is monotone nondecreasing, for all K >
max(m0,M0) the boundary value problem(

ẋ(t) = g(t, xt)−Kx(t),

x0(θ) = x2π(θ), θ ∈ [−r, 0], (2)

has at least one solution.



BVP for FDE 729

Proof. The equation (2) is of the form of the equation (1) with

f(t, u, ϕ) := g(t, ϕ)− ku.

Since g is monotone nondecreasing, it is easy to verify that forM ≥ K the function
g(t, ϕ) + (M − K)u satisfies the Hypothesis (H). Let α0 be a large negative real
number. The constant solution equal to α0 is a lower solution of the equation (2).
Indeed, it is enough to check that

g(t, α0)−Kα0 ≥ 0.

This follows from K ≥ m0 = lim sup
α→−∞

|m(α)|
|α| ≥ |m(α0)|

|α0| .

We prove in the same way that the constant solution β equal to β0 – a positive
real number – is an upper solution.
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