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Abstract

Suitable periodic boundary conditions for the functional differential equa-
tion #(t) = f(t,x,x:) are conditions of the form x4(0) = x2,(0). In this talk
we use the notion of upper and lower solutions combined with monotone itera-
tive method to prove the existence of solutions of this periodic boundary value
problem.
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1 Introduction

Let us consider the boundary value problem
x0(0) = x2.(0), 0 € [—r,0],

where f: I xRx C — R is a continuous function, I = [0,27] and C' = C([—r, 0],R)
is the space of continuous real valued functions defined on [—r,0]. The set C is a
Banach space with supremum norm [|@| = sup;c(_,.q) [¢(¢)|.

To our knowledge none of the methods used previously (see for example [1, 3]
and the references therein) works for such boundary value problems. The aim of
this talk is to give an approach based on iterative methods [2] combined with the
method of upper and lower solutions.

Definition 1.1 «(t) is called a lower solution of (1) if

&(t) < f(t,at), o), t€[0,2m],
= aax(0), Vo € [-r,0].
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B(t) is called an upper solution of (1) if

{B(t) > f(t,B(t), By). te€[0,2n],
5(6) = /827r(6)7 Vo € [_Tv 0]

2 Main Result

Let us make the following assumption on f:
(H)  f(t,u,¢) + Mu is monotone nondecreasing.

Let « and [ be respectively a lower and an upper solution of (1) such that the
assumption (H) is fulfilled. Define the sequence (uy)p>0 on C([—r, 27|, R) by

Uy = «,
an—l—l + Mun—i—l = f(ta Un, un,t) + Mun7
un+1,0(6) = unygﬁ(G), 0 c [—7’, O]

Since f is continuous and by setting ¢, (t) = f(t, un, unt) + Mu,, we can see by
recurrence that the sequence (uy,) is well defined.

Remark 2.1 We point out that the sequence (u,,) is different from the sequences
used in [1, 3] and [4], since the first boundary condition (or the initial condition)
Un+1,0 is expressed in term of the previous term of the sequence at the second
boundary condition uy 2x, i.€., Un+1,0(0) = up2-(0) 6 € [—r,0].

If @ and f are a lower and an upper solution of (1) such that the assumption
(H) is fullfilled, then the sequence (u,) has the following property:

Proposition 2.2 For all k € N one has
at) < ug(t) < B(t).

Proof. We prove that ug(t) < 5(t) Vk € N, the proof for the left inequality is
analogous. We proceed by recurrence.
For k = 0 one has ug(t) = a(t) < 5(t) Vt € [-r,2n].
Now we suppose that ug(t) < B(t) and show that ug1(t) < 5(t) Vt € [—-r,27].
Since
U1+ Mugy1 = f(t, ug, upe) + Muy,

and
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one has
(o1 — B) + M(ugrs — B) < [f(twp, wee) + Mug] — [£(t,8,8,) + M§]
= f(tvukvuk,t) - f(tvﬁaﬁt) + M(uk - /8)
By application of (H) we obtain
(w1 — B) + M(upyr — B) < 0.
Moreover,
up+1(0) — B(0) = ug(27) — B(27) < 0.
Then we have a problem of the form
w+ Mw <0 Vte€|o,2n],
w(0) <0,

where w = wugy; — 5. Hence the question is to prove that w(t) < 0 whenever
t € [0,2n]. To this end one has

(Mw) = MeMu(t) + M)
M fi(t) + M (t)

O

By integrating the term (e ( )) < 0 we get

“w(t) —e"w(0) < 0,
eMa(t) < w(0),
Ma(t) < 0,
which is equivalent to w < 0. This ends the proof since w = ug41 — . |

Theorem 2.3 The sequence (up)keny has a convergent subsequence, which con-
verges to a solution u of the problem (1), i.e., u € C([-r,27],R) N C*([0,27],R)
and ug(0) = uar(0).

Proof. Since a < up < 3, one has
Jull < [led] + (18] < e

In addition,

up + Mu,, = f(t, Uk—1, uk,Lt) + Mug_1 and
larll < Mlugll+  sup  [[f(£ we—1, uk—1,) | + M|ug-1]],
asu<p
t€[0,27]

A
=

[t
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Hence the sequence (uy) is equicontinuous and since it is bounded, by the Ascoli-
Arzela theorem the sequence (uy) has a convergent subsequence.
From
Upy1 + Mupi1 = f(t7un7 un,t) + Muy,

Un+1,0(0) = un2-(0), 6 € [-r0],

an integration yields

t t
i1 (£) — tns1(0) = /0 (5t ) ds + M /0 (U () — tns1(s)) ds.

Since |f(t,up—1,up—14)| < sup {|f(t,v,v)|} <L, L is a constant, by the dom-
a<v<p
t€[0,27]

inated convergence theorem of Lebesgue we get

u(t) —u(0) = /0 f(s,u,ug) ds.

In addition, one has
u0(9) = U27T(9) VG[—T, O]

This ends the proof. |

3 Application
As an application we consider the following functional differential equation
L(t) = g(t, z) — Ka(t)

with ¢ continuous and K is a positive constant. Let m(a) = . <1;(1<f2 g(t,@) and

SUS4am

M(a) = sup g¢(t,@), where @ is the constant function equal to a. Let us make
0<t<2r

Im(a)|

the hypotheses mg = lim sup o] < 10 and My = limsup

a——00 a——+00

M(a)

«

< +o0.

Proposition 3.1 If the function g(t,-) is monotone nondecreasing, for all K >
max(mg, Mp) the boundary value problem

{a’c(t = g(t,z) — Kx(t),

)= &)
x0(0) = z2.(0), 0 € [—r,0],

has at least one solution.
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Proof. The equation (2) is of the form of the equation (1) with

f(ta U, 90) = g(tv (,0) — ku.

Since g is monotone nondecreasing, it is easy to verify that for M > K the function
g(t, o) + (M — K)u satisfies the Hypothesis (H). Let o be a large negative real
number. The constant solution equal to «y is a lower solution of the equation (2).
Indeed, it is enough to check that

g(t,a0) — Kag > 0.

This follows from K > mg = limsup % > ‘"féo‘o("”.
a——00
We prove in the same way that the constant solution S equal to 5, — a positive
real number — is an upper solution. |
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