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Abstract

We design sliding mode controllers for nonlinear dynamic systems by using
a nonlinear programming approach. We show that by appropriate selection of
the objective function and the constraints, it is possible to obtain sliding mode
controller parameters by solving a sequence of nonlinear programming prob-
lems. These parameters determine the forcing function which satisfies possibly
nonlinear, even nonconvex constraints and optimize a given nonlinear objec-
tive function. We use the Modified Subgradient Algorithm for the nonconvex
optimization problems encountered in computing such forcing functions. We
illustrate the validity of our approach by stabilizing an under-actuated two link
robot manipulator, called Acrobot, at vertically upright position.

Keywords: Sliding mode control, Nonlinear programming, Modified
subgradient method, Acrobot stability.

1 Introduction

We introduce a new approach to compute forcing functions for a class of dynamic
systems. More specifically, we introduce a nonlinear programming approach for
sliding mode control (SMC) of nonlinear dynamic systems and apply it to Acrobot,
a two link robot manipulator.

Sliding mode control aims at generating a desired trajectory for a given system
by using an input which may be a discontinuous function of the system states.
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The SMC control input at first steers the state of a nonlinear dynamic system
towards a prespecified neighborhood of a stable surface in the state space. Following
this, the control input steers the state towards the origin while keeping it in this
neighborhood. SMC techniques have received significant attention of the researchers
since the survey paper of Utkin [15]. In the beginning, the researchers focused on the
analysis of second order systems using graphical notions. In the following decades
SMC techniques have been generalized for application to more general classes of
systems. These results take place in ([7, 13, 17]) and the references therein. It has
been emphasized in the literature that the superiority of SMC is apparent in its
performance in the presence of system modelling errors and disturbances. For the
bounded modelling errors and the disturbances, the SMC is shown to achieve its
control goals ([7, 13, 15, 17]).

We model the SMC input generation problem as a nonlinear optimization prob-
lem which is potentially nonconvex. For this optimization problem we use sharp
augmented Lagrangians approach and construct a dual problem. In order to solve
the dual problem we use the Modified Subgradient Algorithm (MSA) introduced
in [9]. The algorithm presented in [9] does not require any convexity and differen-
tiability assumptions, therefore it is applicable to a large class of problems. The
gradient and subgradient methods and their different versions are investigated in
([3, 4]). The duality gap which is a major problem in the nonlinear programming
has been investigated and the theoretical tools for zero duality gap property have
been improved extensively in [1, 9, 10, 11] and [12] (see also the references therein).

The control problem in this paper partitions the control process in two phases:
The reaching and the sliding phases. Each phase is associated with an appropriate
objective function and constraints. In each phase the sliding mode controller input
is updated at certain time instants by using the solution of a nonlinear programming
problem. We show that by appropriate selection of the objective function and the
constraints in each phase, it is possible to obtain a fast reaching performance and
improve the chattering. In [16], the nonlinear programming based sliding mode
controller is applied to an inverted pendulum system, which is known to have a rich
and nonlinear dynamic structure.

A very significant research in the literature that considers optimal control prob-
lem in the nonlinear programming framework belongs to Betts [5]. In [5], the opti-
mal control problem is viewed as an infinite-dimensional extension of the nonlinear
programming problem. Considering that practical methods for solving these prob-
lems require Newton-based iterations with a finite set of variables and constraints,
the infinite-dimensional problem is converted to a finite-dimensional approximation.
It is shown in [5] that the so-formed problem is “large and sparse”, and iterative
approaches that exploit these properties are proposed to solve the problem.

In the next section we present a brief background on the sliding mode con-



714 A. Yazıcı et al.

trol problem. Using this we model the SMC problem as a nonlinear programming
problem. Following this, we present dynamics of Acrobot, a popular two link ro-
bot manipulator, and apply our method to it. In the concluding section we make
comments on the performance of the controller.

2 Problem statement

In this section we briefly introduce the SMC problem and thereafter present our
approach and its major tool, the modified subgradient algorithm (MSA).

Consider the single-input nonlinear differential equation

Ẋ = a(X,u), (1)

where X ∈ Rn is the state vector and u is the scalar control input. The entries
of the n-dimensional vector function a are continuous with continuous bounded
derivatives with respect to the components of X. It is assumed that system (1) is
controllable.

We use the SMC techniques to generate an input function u which gives rise
to a solution of (1) such that its trajectory in the state space at first reaches a
prespecified neighborhood of a sliding surface, which then goes to the origin of the
state space within this neighborhood asymptotically. The SMC design consists of
the following two steps:
1) Designing a stable surface for the system in Rn.
2) Designing a control input that restricts the trajectory of (1) to a prespecified
neighborhood of a stable surface. This makes the trajectory move towards the
origin without leaving the neighborhood of the surface. In this paper we make
a contribution to the second step of the SMC design. We make reference to the
literature for the first step.

In practice, for the sake of simplicity in design, the surface mentioned above
is generally a subspace. We also use a subspace in the design. Choosing a stable
subspace guarantees that every trajectory restricted to the neighborhood of the
subspace reaches the origin of the state space asymptotically ([7, 13, 15, 17]). The
SMC theory relies on the existence of stable sliding subspaces. Systematic and ad
hoc methods for determining stable subspaces is available in the literature ([7, 13,
15, 17]).

Next we outline a principle of computing a sliding mode control input. Consider
the (n− 1)-dimensional subspace of Rn

{X ∈ Rn : GX = 0},
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where G is a row matrix. Also define a function of the state s := GX, and consider
the positive definite function

V =
1

2
s2. (2)

This function decreases as X gets closer to the subspace, and reaches zero value
on the subspace. Let us design an input u for the system (1) so that the time
derivative of V becomes negative. Negativity of dVdt in some interval of t means that
V decreases in that interval. Hence the trajectory approaches the subspace. The
common form of u used in the literature that yields negative dV

dt is

u = ueq(X) + u1(X) + · · ·+ ur(X) + Γ sgn (s), (3)

where ueq is the equivalent control input, a fixed function of X. Each of the r
terms that follow the equivalent input switches between some fixed functions of X
to cancel possibly positive terms in dV

dt , and the last term is used to ensure reaching
the subspace in finite time. There are numerous methods for the computation of
the input u ([7, 13, 15, 17]). Here, in this paper, we present a new way of computing
the sliding mode control input.

If the initial state is not in the prespecified neighborhood of the origin, then
the input function u has to drive it there. The evolution of the state from such
an initial condition to the boundary of the neighborhood of the subspace is called
the reaching phase. This phase is characterized by a positive number δ such that
when s > δ, the state is said to be in the reaching phase. s = δ is the boundary
for the neighborhood of the sliding subspace. On each side of the boundary the
required trajectory behavior is different. Therefore, the decision for the value of δ is
made by the designer regarding performance specifications of the system [7]. In the
reaching phase we select u which minimizes the objective function dV

dt . Obviously,
minimizing dV

dt means doing the best to lessen the distance between the state and
the subspace. To make sure that V strictly decreases, we require it to be less than
a negative number −ηs2, where η is chosen as a positive number complying with
physical specifications of the dynamic system. Because of this constraint, the state
strictly approaches the sliding subspace. For this constraint, in addition to the
upper bound for dV

dt , we also impose a lower bound −γs2, where γ is a positive
real number in order to avoid too fast approaching rates. The factor s2 in this
constraint enlarges the feasible dV

dt values for states farther from the subspace, and
makes the feasible interval of dV

dt smaller for the states closer the subspace. As the
second constraint, we impose upper limit on the size of the input, call it α. As the
third constraint, the set Ω contains the admissible feedback coefficients. This set
is required to be compact which may contain discrete or continuous elements. The
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nonlinear programming problem associated with the reaching phase is as follows:

min
K

dV

dt
(4)

subject to

 −γs
2 ≤ dV

dt ≤ −ηs2,
u ∈ {KX : |KX| ≤ α},
K ∈ Ω ⊆ Rn.

The sliding phase is the system dynamics in the δ-neighborhood of the sliding
subspace. The sliding and the reaching phases are complementary phases in the
state space (i.e., the state is always in only one of them). When the state is in
the sliding phase, we require solution fields which point towards an appropriate
combination of the origin and the sliding subspace. More specifically; defining w
as the projection of X on the sliding subspace, we select an optimal feasible input
function such that the projection w in the next step of simulation is the smallest
possible. The nonlinear programming problem associated with the sliding phase is
as follows:

min
K

°°°°°°w +
wT · Ẋ

kẊk
kwk w

°°°°°° (5)

subject to


−γs2 ≤ dV

dt ≤ −ηs2,
u ∈ {KX : |KX| ≤ α},
K ∈ Ω ⊆ Rn

Notice that the constraints are the same as in the reaching phase (they could be
different though). Minimizing the objective function under these constraints yields
the aforementioned solution field direction. The solution fields that avoid crossing
the sliding subspace obviously improve the chattering. Chattering, frequent cross-
ings of the sliding subspace by the solution trajectory, is one of the major topics in
SMC theory, and various solutions to this problem are proposed in the literature
([2, 7, 15, 17]).

A possible special case in the sliding algorithm occurs when w = 0. When
w = 0, the objective function in (5) equals zero. We handle this case by switching
to the reaching phase sub-algorithm, which is well defined for the w = 0 case, and
the feedback coefficient vector K obtained by this sub-algorithm is suitable for our
control objective.

The nonlinear programming based SMC algorithm, which we call the Main
Algorithm, utilizes the nonlinear programming problems given above in the reaching
and sliding phases. It is as follows:
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Step 1. (Initialization Step) Assign initial values to the time t and the state X, i.e.,
t← t0, X ← X0.
Step 2. (δ-checking Step) Check whether |s| ≤ δ or not. If |s| > δ, then solve the
reaching phase problem, else if |s| ≤ δ then solve the sliding phase problem. Use
the solution to form u = KX.
Step 3. Use u found in step 2 and run system (1) from t to t+∆t.
Step 4. Update the time and the state, and go to Step 2.

The control input function updating the interval ∆t is determined by regarding
the smallest time constant of the physical system. For instance, for the differential
equations arising from the systems that are governed by the Newtonian mechanics,
such as robotics, these time constants are well-known. For a large class of differential
equations of unknown origin, these time constants can be found by using various
techniques. For instance, in linear systems, eigenvalues of the coefficient matrix can
be used for this purpose.

3 The modified subgradient algorithm

The major tool that we use for solving the nonlinear programming problem is
the modified subgradient algorithm [9]. It has a notable performance in having
zero duality gaps for a large class of nonconvex problems. Nonlinear programming
problems of reaching and sliding phases can be brought into the standard form as
in the following problem (P):

min
K

f(K) (6)

subject to
½

h(K) = 0,
K ∈ Ω,

where h(K) is the constraint vector. In the sequel we call (6) the primal problem.
In the next section we present the modified subgradient algorithm that solves

the dual problem corresponding to the primal problem (6).
The sharp Lagrangian function for problem (6) is defined as follows:

L(K, v, c) = f(K) + ckh(K)k− vTh(K), (7)

where v ∈ R2 and c ∈ R+. Defining the dual function as
H(v, c) = min

K∈Ω
L(K, v, c), (8)

the dual problem (P ∗) is
max

(v,c)∈Rm×R+
H(v, c). (9)



718 A. Yazıcı et al.

Using the definitions above, the MSA is as follows:

Initialization. Choose a pair (v1, c1) with v1 ∈ R2, c1 ≥ 0, and let j = 1, and go
to Step 1.
Step 1. Given (vj , cj), solve the following subproblem:

min
K

f(K) + cjkh(K)k− vjh(K) =: H(vj , cj) (10)

subject to K ∈ Ω.
Let Kj be a solution of (10). If h(Kj) = 0, then stop; (vj , cj) is an optimal solution
to the dual problem and Kj is a solution to (6), so f(Kj) is the optimal value of
problem (6). Otherwise, go to Step 2.
Step 2. Update (vj , cj) by

vj+1 = vj − zjh(Kj),
cj+1 = cj + (zj + �j)kh(Kj)k, (11)

where zj and �j are positive scalar step sizes defined in the sequel. Replace j by
j + 1 and go to Step 1.
Step size calculation:
Let us consider the pair (vj , cj) and calculate

H(vj , cj) = min
K∈Ω

{f(K) + cjkh(K)k− vjh(K)}

and let h(Kj) 6= 0 for the corresponding Kj , which means that Kj is not optimal.
Then the step size parameter zj can be calculated as

0 < zj ≤ 2(H−H(vj ,cj))
5kh(Kj)k2 ,

0 < �j < zj ,
(12)

where H is an upper bound for the dual function. For a rigorous treatment of the
MSA one may refer to [9].

4 Stabilization of Acrobot

Acrobot is a two link planar robot manipulator with a single actuator at the elbow
(Figure 1). The control objective in Acrobot stabilization problem is to drive the
links of Acrobot to vertically upright position from every neighboring initial con-
ditions, and keep them in that position thereafter. In other words, it is desired to
find a control input function that moves the joint angles (θ1, θ2) to the unstable
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Figure 1: The Acrobot system

equilibrium point (π2 , 0) from every initial conditions in the neighborhood of this
point, and keep it there in the subsequent times. We use the nonlinear programming
based sliding mode control for this stabilization problem. Recently, Acrobot control
has gained popularity and received a significant attention in the literature ([6, 14]
and references therein). The popularity of Acrobot is due to its under-actuated and
rich dynamics, in which the control of two quantities (i.e., θ1 and θ2) by using only
one control input function is a challenging problem.

The nonlinear differential equation representing Acrobot’s equation of motion
is

ẋ1 = x2,

ẋ2 = −d12(u−c2−φ2)−d22(c1+φ1)
d11d22−d212

,

ẋ3 = x4,

ẋ4 = d11(u−c2−φ2)−d12(c1+φ1)
d11d22−d212

,

(13)

where the components of the system state x1, . . . , x4 are defined by x1 := θ1, x2 :=
θ̇1, x3 := θ2, x4 := θ̇2. In (13), u denotes the control input, and d11, d22, d12, c1, c2, φ1,
and φ2 denote the quantities which are functions of masses and dimensions of the
links, and the system states (one may refer to [6] or [14] for the details).

Using typical values for the link masses, link lengths, link lengths from joint to
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mass center, and link inertias as in [6], we obtain Acrobot’s equation of motion as

ẋ1 = x2,

ẋ2 =
−(7.99 10−3+8.9 10−3 cos(x3))(u−8.9 10−3x22 sin(x3)−0.4367 cos(x1+x3))

0.84 10−3+0.14 10−3 cos(x3)−(7.99 10−3+8.9 10−3 cos(x3))2

+ (0.071 10−3x4+0.1423 10−3x2)x4 sin(x3)−38.84 10−3 cos(x1)−3.49 10−3 cos(x1+x3)
0.84 10−3+0.14 10−3 cos(x3)−(7.99 10−3+8.9 10−3 cos(x3))2 ,

ẋ3 = x4,

ẋ4 =
(0.1062+0.178 cos(x3))(u−8.9 10−3x22 sin(x3)−0.4367 cos(x1+x3))
0.84 10−3+0.14 10−3 cos(x3)−(7.99 10−3+8.9 10−3 cos(x3))2

+ (7.99 10−3+8.9 10−3 cos(x3))((−8.9 10−3x4−17.89 10−3x2)x4 sin(x3)+4.86 cos(x1)+0.436 cos(x1+x3))
0.84 10−3+0.14 10−3 cos(x3)−(7.99 10−3+8.9 10−3 cos(x3))2 .

(14)
Using the transformation X̃ := X − Xe, we can restate the control objective

equivalently as to generate a SMC input function that drives the new state X̃ to
the origin of the state space and keep it there in subsequent times.

Analyzing the behavior of the Acrobot system in the neighborhood of the
vertically upright position, we found a stable subspace {X : GX̃ = 0} with
G =

£
7.4 1.6 0.8 0.2

¤
. One may refer to ([7, 13, 15, 17]) for systematic ap-

proaches of stable sliding surface design.
We next compare our stabilization approach with that in [7]. Consider the

sliding mode control law (Eqn. (7.22) in [7])

u =

 ueq − b(X)∇XV
kb(X)∇XV k ρ̂ if |s| ≥ δ,

ueq − b(X)∇XV
kb(X)∇XV k ρ̂

|s|
δ if |s| < δ,

(15)

with δ = 0.01, ρ̂ = 0.1, and the initial condition X(0) =
£

π
2 0 π

36 0
¤T

. Apply-
ing this to the Acrobot yields the simulation results given in Figures 2—3.

We simulate the Acrobot dynamics (14) using the nonlinear programming based
SMC approach given by Main Algorithm. Noticing that the absolute value of the
input u is bounded by 0.5 in Figure 3, we impose the same bound α = 0.5 on u
in the simulation using our method. Besides, we imposed additional magnitude
constraints on the feedback coefficients vector K in our method by selecting Ω =
{(k1, k2, k3, k4) : −6 ≤ ki ≤ 6, i = 1, . . . , 4}. This obviously makes the feasible
solution set smaller, and increases the difficulty level of the problem. For the purpose
of comparison, we use the same sliding band parameter δ = 0.01 as in [7]. We
specify the desired interval for dV

dt by setting γ = 15, and η = 10. Regarding similar
robotics applications, we select the control input updating interval as ∆t = 0.01.
Figures 4-5 show the computer simulation results of the Acrobot stabilization using
the nonlinear programming based SMC. (We coded our algorithm in MATLAB and
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Figure 2: Simulation results: States of Acrobot under the control law in [7]

Figure 3: Simulation results: The input u and variable s under the control law in [7]
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GAMS [8]. We utilized differential equation solving and graphics capabilities of
the former, and optimization capability of the latter. In MATLAB we used the
differential equation solver ode23.m. In GAMS, for every problem we compared
performances of unconstrained problem solvers conopt and minos, and mostly used
the minos.)

Figure 4: Simulation results: The Acrobot states under the Reaching and Sliding
Algorithms

Comparing Figure 3 to Figure 5, in terms of reaching time to the sliding subspace
neighborhood and smoothness of the trajectory in this neighborhood, it can be
noticed that the nonlinear programming based SMC approach is an alternative
solution method for the problem. Owing to using an objective function that rewards
faster approaching rates in the reaching phase, and by using another objective
function that rewards solutions fields towards the origin in the sliding phase, the
performance of our method is comparable with the existing methods.

At this point a few words may be in order about the robustness of the algorithm.
Our algorithm carries out the control objective robustly even if the system (1)
contains a disturbance term. In case a disturbance term causes a deviation from
the nominal trajectory, the Main Algorithm generates the best feasible feedback
coefficients K, and the system pursues it goal from the disturbed state. Here we
assume that the disturbance term is bounded, and bounds of the control input are
sufficiently large to achieve the control objective in the presence of the disturbance.
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Figure 5: Simulation results: The input u and variable s under the Reaching and
Sliding Algorithms

5 Conclusion

It has been shown that the feedback coefficients in the sliding mode control of an
Acrobot, as well as any other dynamic system, can be expressed as a nonlinear pro-
gramming problem with appropriately selected objective function and constraints.
We used the modified subgradient algorithm to solve these nonlinear programming
problems which are possibly nonconvex. The validity of our approach has been
verified by the simulation results.
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