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1 Introduction

The center-focus (CF) problem for plane ODE systems with polynomial right-hand
sides presents so formidable a challenge that its complete solution is not expected in
the foreseeable future. In fact, until recently, this problem was solved only for a few
types of systems with one edge of the Newton polygon [1, 2]. These subtypes are
systems with a nondegenerate linear part; systems with a Jordan cell linear part;
and systems with a homogeneous nondegenerate truncation.

The existing methods of solution of CF problem for these systems may be de-
scribed as either a reduction to normal forms (including methods using formal power
series [6]) or the construction of the formal first integral [5]. The focal values ob-
tained by these methods usually lose some information on the asymptotics of the
Poincaré mapping and provide only the center conditions.

In this paper, we present an approach to the CF problem based on the gener-
alization of the notion of variational equations, where the necessary conditions for
the center are obtained as a byproduct along with the asymptotics of the Poincaré
mapping.

This approach allows to obtain a simple algorithm for computation of the exact
focal values for all types of systems with one edge of the Newton polygon. We
note for comparison that a brief description of an algorithm based on the proof by
Poincaré of the existence of the first analytical integral takes a few pages in [5];
and it is applicable only for systems with nondegenerate linear part. Our algorithm
described below takes just a few lines.

The benefit of computing explicit asymptotics of the Poincaré mapping becomes
evident when we consider a related problem of degenerate cycle generation. We give
an example illustrating this application.

Finally, we give a simple proof of almost algebraic [4] solvability of CF problem
for all types of systems with one edge of the Newton polygon.
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The structure of this paper is as follows. In Section 2 we describe the algorithm
based on variational equations of high order which resolves CF problem for mon-
odromic singularities with analytical Poincaré mapping. We give a simple proof of
the algorithm, which is easily adaptable for computer algebra systems.

In Section 3 we introduce generalized polar changes of variables and demon-
strate that they are applicable to all types of systems with one edge of the Newton
polygon. Thus the algorithm in Section 2 can be applied to all cases ever studied
by various methods. We define a quasi-homogeneous degree of a monomial in poly-
nomial systems such that coefficients of monomials of the same degree take part in
variational equations of the same order.

In Section 4 we consider some applications of the theory and suggest a gener-
alization which applies to systems with two edges of the Newton polygon. Such
systems were never studied in the framework of CF problem.

2 Variational equations

In this paper, we study systems of equations

dx/dt
def
= ẋ = p(x, y), dy/dt

def
= ẏ = q(x, y), (2.1)

where p and q are polynomials and the origin O = (0, 0) is a monodromic stationary
point of the system (2.1). Suppose that there exists a change of variables x = x(r, ϕ),
y = y(r, ϕ) such that the integral curves of the system (2.1) coincide with the
integral curves of the equation

dr/dϕ
def
= r0 = f(r, ϕ) = f(r, ϕ+ 2π). (2.2)

We assume that the Poincaré mapping r(0)→ r(2π) is analytical at the origin.
The algorithm for computing variational equations of arbitrary order for the

equation (2.2) is as follows [8, 9]. We write this equation as a variational equation
of zero order substituting r = r0, i.e., r00 = f(r0, ϕ). Let r0(ϕ) be the solution
to this equation with the initial value ρ = r0(0) 6= 0. We introduce the notation
rk(ϕ) = ∂rk−1(ϕ)/∂ρ, k = 1, 2, . . . By formal differentiation we find the variational
equations r0k = ∂fk−1(r0, . . . , rk−1, ϕ)/∂ρ = fk(r0, . . . , rk, ϕ) = ∂kf(r0, ϕ)/∂ρ

k. The
initial values for the solutions rk(ϕ) to these equations are r1(0) = 1, and rk(0) = 0,
k = 2, 3, . . .

The procedure to resolve CF problem for the equation (2.2) is to find solutions
to all variational equations on the trivial solution r0 ≡ 0. Then rk(2π), k = 1, 2, . . .,
are the focal values. This follows from the following theorem.
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Theorem 2.1 Let the Poincaré mapping r(0) → r(2π) for the equation (2.2) be
analytical at the origin. The origin is a center if and only if all solutions to the
variational equations on the trivial solution r0 ≡ 0 are 2π-periodic bounded func-
tions.

Proof. Consider the characteristic set of the equation (2.2) χ = {r(0), r(2π)}
[8, 9] for sufficiently small initial values of r(0). The set χ is an analytical curve
passing through the origin. The origin is the center if and only if the set χ is the
bisectrix of the first quadrant of the plane R2.

Let rk(ϕ), k = 1, 2, . . ., be the solutions to the variational equations and ρ =
r0(0) 6= 0 be the initial value of the solution to the equation (2.2). The values
rk(2π), k = 1, 2, . . ., are the derivatives to the curve χ at the point ρ [8] (see Fig. 1).
All solutions to the variational equations depend analytically on the initial value ρ
by the data. Hence the values rk(2π), k = 1, 2, . . ., for the variational equations on
the trivial solution r0 ≡ 0 are the derivatives to the curve χ at the origin.

An analytical curve is the bisectrix of the first quadrant of the plane R2 if and
only if it has the same derivatives at the origin, namely, r1(2π) = 1, rk(2π) = 0,
k = 2, 3, . . . These values coincide with the initial values of the solutions to the
variational equations; hence the sufficient condition is proved.

Further, we will need only variational equations on the trivial solution.
Now we prove the necessity. The first variational equation has the form

r01 = r1f1, (2.3)

where f1(ϕ) is a bounded 2π-periodic function. Hence if r1(2π) = 1, then r1(ϕ) is
also a 2π-periodic bounded function. In fact,

r1(ϕ) = exp

 ϕZ
0

f1(φ) dφ

 . (2.4)

By induction, the n-th variational equation has the form

r0n = rnf1 + r21gn, n = 2, 3, . . . , (2.5)

where gn(ϕ) is a bounded 2π-periodic function expressed through previously deter-
mined solutions to variational equations. Hence if rn(2π) = 0, then rn(ϕ) is also a
2π-periodic bounded function. In fact,

rn(ϕ) = r1(ϕ)

ϕZ
0

r1(φ)gk(φ) dφ. (2.6)
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Fig. 1. Characteristic sets of the center (C) and the focus (F).

Theorem 2.1 is proved along with the fact that all variational equations are
explicitly integrable.

Thus, Theorem 2.1 provides the explicit expansion of the Poincaré mapping for
the equation (2.2) at the origin in Taylor series:

r(2π) = r1(2π)r(0) +
r2(2π)r(0)

2

2!
+ · · · (2.7)

Before we move further, let us examine what this algorithm gives for systems
(2.1) with nondegenerate linear part, which, historically, is the most studied case
of CF problem [3].

Let the linear part of the system (2.1) have imaginary eigenvalues. Otherwise
the system has a structurally stable focus and the algorithm above takes one step.
By the ordinary polar change of variables we reduce the system to the form (2.2).
Then we use formal differentiation and obtain some variational equations. Then
we substitute r0 = 0 in them. We have then r1(ϕ) ≡ 1, and all subsequent so-
lutions to variational equations are trigonometric polynomials. All secular terms
may be omitted by Theorem 2.1, since they automatically vanish if the previously
determined center conditions are satisfied.

Unlike the computation of the formal first integral [5], there are no arbitrary
values involved in the focal ones. So they may be used for analysis of the cycle
generation (see Section 4).
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3 Generalized polar changes

We consider ODE systems (2.1) that have one edge of the Newton polygon and that
by renormalization of the variables x, y, and t may be written as

ẋ = p(x, y) = y2jm−1 + · · · ,
ẏ = q(x, y) = −x2jn−1 + · · · , (3.1)

where j,m, n ∈ N; m and n are relative primes; and all monomials denoted by dots
map on the edge and/or inside the Newton polygon of the system (3.1).

Systems (3.1) include all types that were ever studied in the framework of CF
problem [1, 2], namely, systems with nondegenerate linear part j = m = n = 1;
systems with a Jordan cell linear part j = m = 1; and systems with a homogeneous
nondegenerate truncation m = n.

We suggest the following changes of variables

x = αrm | cosϕ|k sign (cosϕ),
y = β rn | sinϕ|c sign (sinϕ), (3.2)

where m and n are the same as in the system (3.1), and α ∈ R, β ∈ R, k ∈ Q, c ∈ Q
are positive constants. The system (3.1) takes the form

r0 =
r (xk q(x, y) sin2 ϕ+ y c p(x, y) cos2 ϕ)

sinϕ cosϕ (xmq(x, y)− y n p(x, y))
. (3.3)

The changes of variables (3.2) are applied in four curvilinear sectors of the plane
(i−1)π/2 ≤ ϕ ≤ iπ/2, i = 1, . . . , 4, and the equation (3.3) corresponds to four ODEs
defined in each sector. The Poincaré mapping is matched from the four different
representations of transient trajectories in these sectors.

The changes (3.2) are more general than we need for Theorem 2.1. They will be
used later. The constants α, β, k, c may be chosen in such a way that the trajectory
of the truncated system, i.e., the system having monomials only on the edge of the
Newton polygon [2], simplifies.

But first we prove that the changes (3.2) give an analytical Poincaré mapping
for systems (3.1) if certain conditions on the coefficients of the truncated system
are satisfied. For that in this section we take α = β = k = c = 1 in (3.2).

Let the quasi-homogeneous degree of the monomial xkyc (k, c ∈ N) be
km+(c+1)n in the first equation of the system (3.1), and be (k+1)m+ cn in the
second equation of the system (3.1).

It is obvious that the truncated system (3.1) is quasi-homogeneous and that
all monomials mapping on the edge of the Newton polygon are, in a sense, of the
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same order of smallness. Here their degree is 2jmn. But, surprisingly, the order of
smallness of all monomials in systems (3.1) was never defined before. The definition
above (yet to be proved correct) is not unique, but it sorts out all monomials in the
system (not only for monodromic stationary points, by the way).

We define the function

F (ϕ) = lim
r→0

r0

r
, (3.4)

where r0 is the right-hand side of the equation (3.3).

Theorem 3.1 If the denominator of the function F (ϕ) does not vanish for suffi-
ciently small |Imϕ|, then the stationary point O of the system (3.1) is monodromic,
and the Poincaré mapping is analytical at the origin.

Proof. The numerator and the denominator of the function F (ϕ) are trigono-
metric polynomials with coefficients of monomials of degree 2jmn in the system
(3.1). This corresponds to the fact that the truncated system being quasi-homoge-
neous is integrable by the substitution (3.2).

The denominator of the function F (ϕ) satisfies the condition of the theorem for
sufficiently small coefficients of the truncated system, since if they vanish, then the
truncated system (3.1) is a Hamiltonian one.

We expand the right-hand side of the equation (3.3) in Taylor series in powers of
r. Each term of the expansion is a fraction with the denominator being some power
of the denominator of the function F (ϕ). Hence the right-hand side of the equation
(3.3) is analytical for sufficiently small |r| and |Imϕ|, and hence the solution to
ODE (3.3) exists for ϕ ∈ [0, 2π], i.e., the stationary point O of the system (3.1) is
monodromic.

For example, the system

ẋ = y + ax2, ẏ = −x3

with j = 1, m = 1, n = 2 has

F (ϕ) = − cosϕ(a cos2 ϕ+ sin3 ϕ)

cos4 ϕ+ 2a cos2 ϕ sinϕ+ 2 sin2 ϕ
.

The denominator cos4 ϕ+ 2a cos2 ϕ sinϕ+ 2 sin2 ϕ 6= 0 for |a| < √2.

Theorem 3.2 The variational equation of the order N computed for the equation
(3.3) depends only on coefficients of monomials in the system (3.1) of degree no
greater than 2jmn+N − 1.
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Proof Consider a monomial xkyc in the first equation (3.1). The power of r in
the equation (3.3) corresponding to this monomial equals the degree of the monomial
plus 1 in the numerator and equals the degree of the monomial in the denominator of
the equation (3.3). The same is true for monomials in the second equation (3.1). So
coefficients of all monomials of the same degree are gathered at the same powers of
r in the equation (3.3). We divide the numerator and denominator of the equation
(3.3) by r2jmn and multiply both sides of the equation (3.3) by the denominator.
Then we use the procedure for computation of variational equations. Each formal
differentiation decreases the powers of r0 by 1. So when we substitute r00 = r0 = 0,
the first variational equation would depend only on coefficients of monomials of the
truncated system (3.1), i.e., monomials of degree 2jmn, etc.

4 Some applications

It follows from Theorem 2.1 that the values rk(2π), k = 1, 2, . . ., are the focal ones
for the monodromic stationary point O of the system (3.1). If r1(2π) 6= 1, then the
point O is a focus of the first order. It is an analog of the structurally stable focus,
since it persists if there are small changes of the coefficients of the monomials of the
truncated system, i.e., the curve χ is transversal to the bisectrix C at the origin. If
r1(2π) = 1, rc(2π) = 0, c < k, and rk(2π) 6= 0, then it is a focus of the order k. It
is an analog of the weak focus. Obviously, the order of the focus coincides with the
order of tangency of the curves χ and C at the origin.

Theorem 3.2 allows to estimate the order of the focus for the monodromic sta-
tionary point without computing the variational equations. Indeed, omitting mono-
mials of the degree greater than 2jmn+N − 1 cannot affect the focal values of the
order less or equal to N = 1, 2, . . .

We remark that the disposition of the curve χ with respect to the bisectrix C
allows to make some conclusions on the nature of solutions to the system (3.1) in
a small neighborhood of the stationary point O. For example, Fig. 1 corresponds
to an unstable weak focus and stable limit cycle in the equation (3.3). In systems
(3.1) stability and instability interchange, since the trajectories go clockwise there.

When we consider a system (3.1) depending on a parameter, then the parameter
change may cause the characteristic curve χ to twist and intersect with the bisectrix
C. This corresponds to the limit cycle generation. The Hopf bifurcation is the
simplest example of this phenomenon; here the first focal value becomes equal to 1.
When focal values of higher order vanish, there are possible bifurcations of arbitrary
high degeneracy. The degeneracy may be measured by the number of variational
equations needed to resolve it.
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Example 4.1. Consider the following system of equations

ẋ = y3 + a x3y + b x5, ẏ = −x5 + c x2y2. (4.1)

Such systems were never considered in the framework of CF problem. First, we
make the change of variables (3.2) with m = 2, n = 3, and α = β = k = c = 1. The
function F (ϕ) (3.4) for the system (4.1) takes the form

F (ϕ) = −sinϕ cosϕ(sin
2 ϕ+ a cos3 ϕ+ c sin2 ϕ cosϕ− cos4 ϕ)

2 cos6 ϕ+ (3a− 2c) sin2 ϕ cos3 ϕ+ 3 sin4 ϕ .

It is equal to the function f1 in the proof of Theorem 2.1. By Theorem 3.1, the
stationary point O of the system (4.1) is monodromic for |3a − 2c| < 2

√
6. The

truncated system (i.e., b = 0) is reversible (x, y, t→ x,−y,−t), and its monomials
are of degree 12; the degree of the monomial bx5 equals 13. Hence the system (4.1)
has a weak focus by Theorem 3.2, and we have r1(2π) = 1 without computing the
integral of the function F over the period.

We put c = 3a/2 and investigate the limit cycle generation in the system (4.1)
under the change of coefficient (parameter) a > 0.

The function g2 (see the formula (2.5)) takes the form

g2(ϕ) =
b cos7 ϕ(2 + sin2 ϕ) (3 a sin2 ϕ− 2 cos3 ϕ)

(2 cos6 ϕ+ 3 sin4 ϕ)2
,

where r1(ϕ) is found by the formula (2.4).
The second focal value is found by the formula (2.6) taking the integral over the

period [0, 2π]. We take b = 1, since the second focal value r2(a, b) = r2(a) depends
on b linearly.

Computations show that the system (4.1) has the second order focus for all a
except a = a0 ≈ 4.54132378, when the focal value r2(a) changes sign, i.e., r2(a) < 0
for a < a0, and r2(a) > 0 for a0 < a. Besides, r2(a) ³ (a−a0)C2, r3(a) ³ (a−a0)2C3
and r4(a) ³ C4 as a→ a0, where r3(a) and r4(a) are the third and the fourth focal
values respectively, and C2, C3, C4 are positive constants, which may be found
with the same accuracy as the focal values if we compute the mixed variations of
equations (2.3), (2.5) with respect to the parameter a [8].

Consequently, the focus is unstable in the coordinates (3.2) for a > a0, since
r(2π) > r(0) at the origin; and for a < a0, the focus is stable, since r(2π) < r(0)
for small r(0). Hence for a < a0, the system (4.1) has limit cycles, which are
unstable in coordinates (3.2) (see Fig. 1). In the original coordinates, the stability
and instability here interchange, as was remarked earlier.
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Let us estimate the initial radius of the limit cycle, i.e., the value r(2π) = r(0) =
r(0)(a) for small a− a0 < 0. We use the expansion (2.7) and obtain the formula

r(0)(a) ≈ 2−r3(a) +
p
r23(a)− 3r2(a)r4(a)
r4(a)

, (4.2)

i.e., r(0)(a) ³ √a0 − a.
For example, for a = a1 = a0 − 0.1 the initial radius of the limit cycle equals

r(0)(a1) ≈ 0.57026001. Computed focal values are r2(a1) ≈ −0.03689080, r3(a1) ≈
0.00204139, r4(a1) ≈ 1.22542310. Using the formula (4.2), we obtain r(0)(a1) ≈
0.59772201.

Now, we make the change of variables (3.2) with α = (1/2)1/6, β = (1/3)1/4,
k = 1/3, c = 1/2. Here we consider variational equations on the interval [−π, π].

The first variational equation takes the form

r01(ϕ) = −
a
√
6

12
sign (sinϕ) r1(ϕ).

We substitute the solution to this equation into the second variational equation,
and after some simplifications, we obtain the equation for the critical value of the
parameter a when the limit cycle is born:

0 =

πZ
0

| cos t|2/3(3 a cos t sin t−√6 cos2 t) exp(−a√6 t/12)√
sin t

dt. (4.3)

We found the solution a = a0 ≈ 4.54132378 to the equation (4.3) with no
less than 30 decimal places. We put forward a hypothesis: the value a0 is not
algebraic.

Algebraic solvability of CF problem means that all center conditions are alge-
braic. This is, generally, not the case [4]. We recall that almost algebraic solvability
[4] of CF problem is the algebraic solvability considered for systems with fixed
coefficients of monomials of the truncated system.

Theorem 4.1 Let the system (3.1) satisfy the condition of Theorem 3.1 and the
coefficients of the truncated system be numbers. Then all center conditions for the
system (3.1) are polynomial ones.

Proof. The solution r1(ϕ) to the first variational equation (2.3) does not depend
on the coefficients of the system (3.1) by the data. The denominators in the func-
tions gk(ϕ) do not depend on them either (see the proof of Theorem 3.1). Hence if
the previous center conditions are satisfied, i.e., the functions rj(ϕ), j = 1, . . . , k−1,
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are 2π-periodic, then the function gk(ϕ) is a combination of 2π-periodic functions
with coefficients of polynomials in coefficients of the system (3.1).

For polynomial systems (3.1) there may be, obviously, only a finite number
of independent center conditions by virtue of Hilbert’s theorem on the bases in
polynomial ideals [7].

We remark that Theorem 2 in [4, page. 36] is a special case of Theorem 4.1
(m = n).

The evidence suggests that an analytical Poincaré mapping may exist only for
systems with one edge of the Newton polygon. This may be the reason why systems
with more than one edge of the Newton polygon were never studied in the framework
of CF problem until recently [1, 2].

However, the changes of variables (3.2) may be applied in curvilinear sectors on
Riemann surfaces instead on the plane R2. One such example was studied in [10]
for an ODE system with a Hamiltonian truncation. For the first time, the center
conditions were obtained for the system with two edges of the Newton polygon
along with the explicit asymptotics of the Poincaré mapping.
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