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Abstract

There are some physical phenomena and engineering problems whose math-
ematical models appear as difference equations with variable coefficients. In
this paper, at first we define the concept of discrete multiplicative derivative
and discrete multiplicative integration, then the invariant function with respect
to this derivative is introduced.
Next differential equations with this type of derivative are considered. In

the final section, we consider some initial and boundary value problems which
include difference equations with variable coefficients. At the end, by making
use of linear algebra and numerical differentiation and discrete multiplicative
integration, we present an analytic-numerical method for solving these differ-
ence equations.

Key words: Difference equation, Invariant function, Discrete multiplicative
differentiation, Discrete multiplicative integration.

1 Introduction

To get an idea and detailed information about additive and multiplicative discrete
differentiation we could refer to many books and papers like [1, 2] and [3].

The main problems of additive discrete differentiation are to discretize the linear
differential equation and use the discretization to find an approximate solution of
the above mentioned differential equation [1] and [4]. In addition, there are certain
models in physics and engineering and especially in mathematics such that when
we make their mathematical method they become discrete problems and systems,
such as to find the general term of an arithmetic sequence [5] and the reproduction
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of the rabbits which is given by the Fibonacci sequence [7] and recursive formula
for evaluating the n-th order determinants [8].

Except for some problems and examples of nonlinear discrete multiplicative
analysis, the above mentioned problem has not been discussed as a system of equa-
tions. Some discussion about continuous multiplicative differentiation and integra-
tion and their properties in [9] has been done by Gantmacher. The aim of this paper
is discussing the form of a system of equations. Some properties of discrete addi-
tive and multiplicative differentiation are discussed in [10]. The simplest example
for discrete multiplicative differentiation is the geometric progression which will be
in the form of a Cauchy problem that contains firsts order, we could use discrete
additive differentiation to find the general term of the arithmetic progression.

Finally in the first part of the paper [10], after introducing the concept and prop-
erties of discrete multiplicative and additive differentiation, some kinds of nonlinear
difference equations are solved by using multiplicative differentiation.

In this paper we also introduce a numerical and approximate solution of ordi-
nary linear differential equations with variable coefficients by the help of discrete
multiplicative analysis.

2 Discretization process

First with the help of classical analysis, we consider the following n-th order linear
differential equation

y(n)(x) + a1(x)y
(n−1)(x) + a2(x)y

(n−2)(x) + · · ·
+ an−1(x)y0(x) + an(x)y(x) = 0, x > 0, (1)

with the following initial conditions:

y(k)(0) = αk, k = 0, 1, 2, . . . , n− 1. (2)

First with the following change of variables we transfer this problem to a system of
first order differential equations:

y(x) = y1(x),

y0(x) = y01(x) = y2(x),

y00(x) = y001(x) = y02(x) = y3(x),

...

y(n−1)(x) = y
(n−1)
1 (x) = y

(n−2)
2 (x) = · · · = y00n−2(x) = y0n−1(x) = yn(x).
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We have in this case

y(n)(x) = y
(n)
1 (x) = y

(n−1)
2 (x) = · · · = y00n−1(x) = y0n(x),

and finally problem (1) and (2) will be in the form of the following system of
equations:y0j(x)− yj+1(x) = 0, j = 1, . . . , n− 1,

y0n(x) + a1(x)yn(x) + a2(x) + yn−1(x) + · · ·+ an(x)y1(x) = 0, x > 0.
(3)

Then we have initial conditions as follows:
y1(0) = α0,

y2(0) = α1,
...

yn(0) = αn−1.

(4)

The above Cauchy problem with the help of the theory of matrices can be written
compactly as follows. We put

Z(x) = (y1(x), y2(x), . . . , yn(x))
T .

With the help of the matrix

a(x) =


0 −1 0 · · · 0 0
0 0 −1 0 · · · 0

· · ·
0 0 · · · 0 0 −1

an(x) an−1(x) · · · a3(x) a2(x) a1(x)


the Cauchy problem (3) and (4) will be compactly written as follows:

Z 0(x) + a(x)Z(x) = 0, x > 0, (5)

Z(0) = α, (6)

where
α = (α0, α1, . . . , αn−1)T .

We must note that both coefficients and unknowns are of the same type, it means
that in problem (3), (4) they are functions and in problem (5) and (6) they are not,
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but the coefficients of the equations are in the form of a functional matrix and its
unknown is a column functional vector. To eliminate this difficulty we put

ᾱ = (α, α, . . . , α)

in which ᾱ is an n-th degree matrix and problem (5), (6) will be changed as follows:

Z̄ 0(x) + a(x)Z̄(x) = 0,

Z̄(0) = ᾱ (7)

in which Z̄(x) is an n-th order matrix, and is the unknown of the Cauchy problem
(7).

Note that in problem (7) the coefficient, the right-hand side of the initial con-
dition and the unknown are of the same type. It means that every one of them is
an n-th order square matrix. To solve the above problem, we use a method similar
to the case of a function.

It is clear that there are many ways to discretize the differentiation and the more
the points (nods) are, the more accurate the approximation is. To use discrete dif-
ferentiation analysis we replace ordinary differentiation by numerical differentiation
with two points, such that the selection of points of network in the form of x = hk,
in which h ∈ R+ and k ∈ N ∩ {0} and constant, and the differentiation Z̄(x) is as
follows:

Z̄ 0(x) ≈ Z̄((k + 1)h)− Z̄(kh)

h
, k ≥ 0.

In this case if we put

Z̄(kh) = Zk, k ≥ 0,
a(kh) = ak, k ≥ 0,

then problem (7) will be in the following discrete form(
Zk+1 = [I − hak]Zk, k ≥ 0,
Z0 = ᾱ,

(8)

in which
a0 = lim

x−→0 a(x).

The equation (8) can be written as follows:

Zk+1 · Z−1k = I − hak
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and Zk+1Z
−1
k is the right discrete multiplicative differentiation of the matrix Zk,

and problem (8) can be considered as a system of equations with discrete multi-
plicative differentiation such that its solution can be found with the help of discrete
multiplicative integration as follows

Zk =

·lk k

0
(I − haj)

¸
ᾱ, k ≥ 0, (9)

in which the symbol
lk
denotes the discrete multiplicative integration and the lower

arrow limit represents the direction of increasing indices j from 0 to k and the
matrices will be written from right to left.

Remark 1 In [11], the symbol
l
is used to show discrete additive integration.

When the lower and upper limits of discrete additive integration are equal, the
result will be zero. But if the lower and upper limits of discrete multiplicative
integral are equal, the result will be one.

Remark 2 Whenever in the compactly written problem (3) we replace Z(x) with
the row vector (y1, y2, . . . , yn) and b(x) with the matrix

b(x) =


0 0 0 · · · 0 an(x)
−1 0 0 0 · · · an−1(x)

· · ·
0 0 · · · 0 0 a2(x)
0 0 · · · 0 −1 a1(x)

 ,

instead of system (5) we obtainZ 0(x) + Z(x)b(x) = 0, x > 0,

Z(0) = β,

in which
β = (α0, α1, . . . , αn−1)

is a row vector. In this case the discretized problem (8) will be as follows:(
Zk+1 = Zk(I − hbk), x > 0,

Z0 = β̄,

in which β̄ is a square matrix of order n with n times repeating of the first row.
The solution of the above discrete problem similar to (9) will be as follows:

Zk = β̄

·lk k

0
(I − hbj)

¸
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in which the arrow in the above limit is related to an increase of the indices, j from
zero to k, and the multiplication of matrices is from left to right.

Remark 3 If in the initial value problem (1) and (2) the existing differentiation is
discrete additive differentiation and its variable x does not change over real numbers,
then in problem (8) which results from problem (7) the relation (9) which is the
solution of (8) is real and is the exact solution of problem (1) and (2) without any
error.

Remark 4 Under the conditions of Remark 3, problem (1) and (2) is in fact a
difference variable coefficient equation whose real solution is given by relation (9).

3 Discrete multiplicative integration

Consider the Cauchy problem for the second order linear differential equationy00(x) + a(x)y(x) = 0; x > 0,

y(0) = α0, y
0(0) = α1.

We put the first differential coefficient zero (reducing order method). To change
the above problem to a system of first order differential equations we put

y(x) = y0(x) =⇒ y0 = y00 = y1, y00 = y000 = y01.

In this case we have y00(x)− y1(x) = 0,

y01(x) + a(x)y0(x) = 0,

in which the initial conditions are as followsy0(0) = α0,

y1(0) = α1.

The following symbols are used for this purpose:

Z(x) =

µ
y0(x)
y1(x)

¶
, a(x) =

µ
0 −1

a(x) 0

¶
, α =

µ
α0
α1

¶
.

In this case the problem will be written as follows:(
Z 0(x) + a(x)Z(x) = 0, x > 0,

Z(0) = α.
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Now we discretize the above problem. For this purpose we divide the real axis by
step h, we have

x = kh, k ≥ 0, h ∈ R+
and consider the first differential of Z(x) by two points:

Z 0(x) ≈ Z((k + 1)h)− Z(kh)

h

and if we put Z(hk) = Zk, then we will have(
Zk+1 = (I − hak)Zk, k ≥ 0,
Z0 = ᾱ,

in which Zk is a square matrix of order 2, ᾱ is a matrix of the same type whose
every column is equal to the vector α. Also,

a0 = lim
x−→0a(x).

Now, if we put k = 0, we have

Z1 = (I − ha0)Z0 = (I − ha0)ᾱ

and if k = 1, we have:

Z2 = (I − ha1)Z1

= (I − ha1)(I − ha0)ᾱ.

If we continue this process, we will have:

Zk = (I − hak−1)(I − hak−2) · · · (I − ha1)(I − ha0)ᾱ

=

k−1Y
j=0

(I − haj)

 ᾱ
in which the above arrow of multiplication will show an increase of j from right to
left. Then, if we use the discrete multiplicative integration symbol, we have

Zk =

·lk k

0
(I − haj)

¸
ᾱ.

To find the approximate solution of the Cauchy problem, we calculate the product

of the above functional matrix and the vector α =
µ

α0
α1

¶
. The first component

of the resulting vector is the approximate solution of the problem.
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We calculate the fundamental matrix for some values of k:

Z1 =

µ
1 h

−ha(0) 1

¶
ᾱ, k = 1,

Z2 =

Ã
1 h

−ha(1) 1

!µ
1 h

−ha(0) 1

¶
ᾱ =

µ
1− h2a(0) 2h

−h(a(1) + a(0)) −h2a(1) + 1
¶
ᾱ,

Z3 =

Ã
1− h2(2a(0) + a(1)) h(3− h2a(1)

−h(a(2) + a(1) + a(0)) + h3a(2)a(0) 1− h2(2a(2) + a(1))

!
ᾱ.

Considering the above mentioned matrix value for the unknown function in the 3rd
step is as follows:

y(3h) =
£
1− h2(2a(0) + a(1))

¤
α0 + h

¡
3− h2a(1)

¢
α1.

If we want to calculate y0(3h), we use the 2nd row of Z3:

y0(3h) =
£−h(a(2) + a(1) + a(0)) + h3a(2)a(0)

¤
α0 +

£
1− h2(2a(2) + a(1))

¤
α1.

4 Difference equation

According to Remark 4, we consider the Cauchy problem containing a second or-
der difference equation with variable coefficients and we get its analytic solution
according to the discrete multiplicative integration:yn+2 + anyn+1 + (an − 1)yn = 0, n ≥ 0,

y0 = α0, y1 = α1.

With the help of the definition of discrete additive differentiation

y0n = yn+1 − yn,

y00n = yn+2 − 2yn+1 + yn,

the Cauchy problem will be in the following form:y00n + (an + 2)y0n + 2anyn = 0, n ≥ 0,
y0 = α0, y00 = α1 − α0.
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With the change of variable y0n = Zn we have the following system of equations:y0n − Zn = 0, y0 = α0,

Z 0n + (an + 2)Zn + 2anyn = 0, Z0 = α1 − α0,

and with the substitution

Wn =

µ
yn
Zn

¶
, An =

µ
0 −1
2an a2 + 2

¶
the problem will be compactly written as follows:

W 0
n +AnWn = 0,

W0 = α,

in which α =

µ
α0

α1 − α0

¶
.

Now with calculating the eigenvalues and eigenvectors of the matrix An, we will
have its canonical form as follows:

λ1(n) = 2, λ2(n) = an,

v1 =

µ
1
−2

¶
, v2 =

µ
1
−an

¶
.

In this case

Λn =

µ
2 0
0 an

¶
, mn =

µ
1 1
−2 −an

¶
.

Assume that
detmn = 2− an 6= 0.

In this case with the help of the substitution

Wn = mnXn

we will have the following solution for Xn:

Xn =

 (−1)nC0 +
lk n

0
(−1)n+1+jbj

2−a0
2−an v0

lk n

0
(1− aj)


in which

bj = −
a0j

2− aj
· 2− a0
2− aj+1

v0

lk n+1

0
(1− aj).
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If we put Xn in Wn and find the arbitrary constants C0 and v0 from the initial
condition W0 = α, we have

Wn =

µ
yn
zn

¶

=

µ
1 1
−2 −an

¶(−1)n (1−a0)α0−α12−a0 +
lk n

0
(−1)n+1+j −a

0
j

2−aj · α0+α1
2−aj+1

lk j+1

0
(1− ak)

α0−α1
2−an

lk n

0
(1− aj)

.

From this we have the final analytic solution of the Cauchy problem of Example 2:

yn = (−1)n (1− a0)α0 − α1
2− a0

+
lk n

0
(−1)n+j a0j(α0 + α1)

(2− aj)(2− aj+1)

lk j+1

0
(1− ak) +

α0 + α1
2− an

lk n

0
(1− aj).

We can easily see that the above analytic solution satisfies both the difference
equation with variable coefficients and the given initial conditions.

Remark 5 As we said [11] the discrete additive integration and discrete multi-
plicative integration are represented as follows:&

n

0
fk =

n−1X
k=0

,
lk n

0
fk =

n−1Y
k=0

fk .
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