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Abstract
The Bohl transformation (sometimes also called the trigonometric trans-

formation) is one of the basic tools of the oscillation theory of Sturm-Liouville
second order differential equations. We present various extensions of this trans-
formation, including the formulation of some new results and open problems
associated with this transformation.
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1 Introduction

The classical Bohl transformation [5] (sometimes called the trigonometric transfor-
mation) concerns the second order Sturm-Liouville differential equation

(r(t)x0)0 + c(t)x = 0, (1)

where r, c are continuous functions, r(t) > 0, and reads as follows:

Proposition 1 Let x1, x2 be linearly independent solutions of (1) for which r(x01x2−
x1x

0
2) = ±1 and let h =

p
x21 + x22. Then the transformation x = h(t)u transforms

(1) into the equation µ
1

q(t)
u

¶0
+ q(t)u = 0, q :=

1

rh2
. (2)

In particular, the solutions x1, x2 can be expressed in the form

x1(t) = h(t) cos

µZ t

q(s) ds

¶
, x2(t) = h(t) sin

µZ t

q(s) ds

¶
.
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Since 1905, when the original paper of Bohl appeared, the Bohl transformation has
been extended in many directions. These extensions, similarly to Proposition 1,
enable to establish Sturmian-type separation theorems.

The aim of this paper is to present a survey of extensions of the Bohl transfor-
mation, to discuss applications in oscillation theory of various equations, including
a formulation of some open problems. We also prove some new results concerning
the Bohl transformation for symplectic dynamic systems on time scales.

The paper is organized as follows. In the next section we show the extension of
the Bohl transformation to linear Hamiltonian systems. Section 3 deals with the
discrete version of this transformation, applied to symplectic difference systems.
The last section is devoted to the Bohl-type transformation for symplectic dynamic
systems on time scales.

2 Linear Hamiltonian systems

Let A,B,C : R→ Rn×n be matrices of continuous functions such that the matrices
B,C are symmetric, i.e., BT = B, CT = C, and consider the 2n-dimensional linear
Hamiltonian differential systemµ

x

u

¶0
= H(t)

µ
x

u

¶
, H =

µ
A B
C −AT

¶
. (3)

If Z is a fundamental matrix of (3) which is symplectic at some t0 ∈ R, i.e.,

ZT (t0)JZ(t0) = J , J =

µ
0 I
−I 0

¶
,

then Z is symplectic everywhere. This easily follows from the identity (ZTJZ)0 = 0
which can be directly verified using the identity

HT (t)J + JH(t) ≡ 0. (4)

If R is a 2n × 2n matrix of continuously differentiable functions, the transfor-
mation µ

x

u

¶
= R(t)

µ
y

z

¶
transforms (3) into the systemµ

y

z

¶0
= Ĥ(t)

µ
y

z

¶
, Ĥ = R−1(−R0 +HR). (5)
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Moreover, if the matrix R is symplectic, the resulting system (5) is again a Hamil-
tonian system, i.e., the matrix Ĥ satisfies (4). If the transformation matrix R
equals J , i.e., Ĥ = J THJ , system (5) is said to be reciprocal system to (3). This
terminology is motivated by transformations of the Sturm-Liouville equation (1).
This equation can be written as a 2-dimensional Hamiltonian system with u = rx0,
A = 0, B = 1

r , C = −c, and the reciprocal system is rewritten as the so-called
reciprocal equation (if c(t) 6= 0)µ

1

c(t)
u0
¶0
+

1

r(t)
u = 0.

Observe that equation (2) coincides with its reciprocal equation. Hence, the Bohl
transformation can be regarded as a transformation of (1) into the self-reciprocal
equation.

The next theorem, proved in [11], extends the Bohl transformation to (3).

Theorem 1 Let Z =

µ
X1 X2

U1 U2

¶
be a symplectic fundamental matrix of (3), H

be any matrix satisfying HHT = X1X
T
1 +X2X

T
2 , and G = (U1X

T
1 − U2X

T
2 )H

T−1.
The transformation µ

x

u

¶
=

µ
H 0
G HT−1

¶µ
y

z

¶
(6)

transforms (3) into the so-called trigonometric systemµ
y

z

¶0
=

µ
P Q
−Q P

¶µ
y

z

¶
, (7)

where the matrix Q = H−1BHT−1 is symmetric and the matrix P is antisymmetric,
i.e., Q = QT and P = −PT . Moreover, the matrix H can be chosen in such a way
that P = 0.

The concept of a trigonometric system was introduced by Barrett and Reid
[4, 21] in connection with the Prüfer transformation of (3). System (7) is again a
Hamiltonian system (since the transformation matrix in (6) is symplectic) and its

matrix Ĥ =

µ
P Q
−Q P

¶
is antisymmetric, i.e., the fundamental matrix of this sys-

tem is (in addition to symplecticity) also orthogonal. Consequently, the trigonomet-
ric transformation from Theorem 1 can be regarded as a transformation of a system
with symplectic fundamental matrix into a system with orthogonal symplectic fun-
damental matrix. Another point of view on the generalized Bohl transformation is
that this transformation transforms general linear Hamiltonian differential system



374 Ondřej Došlý

(3) into a self-reciprocal system, since (7) coincides with its reciprocal system as
can be verified by a direct computation.

Similarly to the scalar case, oscillatory properties of trigonometric systems (7)
are easier to investigate than these properties of a general Hamiltonian system
(3). In particular, if

¡S
C

¢
is a 2n × n matrix solution of (7) such that the matrix

W = C + iS, i =
√−1 being the imaginary unit, is unitary for some t0, i.e.,

W ∗W = WW ∗ = I, where W ∗ stands for the conjugate transpose of W , then
W is unitary everywhere. Indeed, we have W 0 = iQW and this, together with the
symmetry of Q, immediately imply thatW is unitary. This means that the matrices
S,C satisfy the identities

STC = CTS, CTC + STS = I, (8)

SCT = CST , CCT + SST = I,

and hence the matrix V =WWT = CCT − SST + 2iSCT has symmetric real and
imaginary parts. Moreover, this matrix solves the differential system

V 0 = i [Q(t)V + V Q(t)], (9)

and hence its determinant satisfies the Liouville-Jacobi formula

detV (t) = detV (t0) exp

½
2 i

Z t

t0

TrQ(s) ds

¾
.

where Tr stands for the trace, i.e., the sum of diagonal entries, of the matrix
indicated.

Oscillatory properties of (3) are defined as follows. This system is said to be
oscillatory if there exists a 2n× n matrix solution

¡X
U

¢
such that the n× n matrix

XTU is symmetric, rank
¡X
U

¢
= n (such solution is said to be the conjoined basis, see

[17], another terminology for such a solution, without assuming the rank conditions,
is prepared solutions, see [16], or isotropic solution, see [10]), and a sequence tn →∞
such that detX(tn) = 0, in the opposite case (3) is said to be nonoscillatory. Note
that if (3) is supposed to be controllable [17] (another terminology is identically
normal [21]), i.e., the trivial solution

¡x
u

¢ ≡ ¡0
0

¢
is the only solution for which

x(t) ≡ 0 on an interval of positive length, then the zero points of detX(t) cannot
have an accumulation point inside of the interval where the matrices A,B,C are
continuous and B is nonnegative definite.

The following theorem deals with the basic oscillatory properties of (7). A part
of the proof of this statement statement can be found in [3] and the rest in [14, 15].

Theorem 2 Suppose that the matrix Q is nonnegative definite for large t, let
¡S
C

¢
be a conjoined basis (7) satisfying (8), and let V = CCT − SST + 2iSCT .
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(i) The number λ = 1 (λ = −1) is an eigenvalue of V (t) if and only if the matrix
S(t) (the matrix C(t)) is singular. The eigenvalues of V move around the
unit circle in the positive direction as t increases.

(ii) Let (7) be controllable and Q(t) be nonnegative definite for large t. Then (7)
is nonoscillatory if and only ifZ ∞

TrQ(t) dt <∞. (10)

If
¡S
C

¢
is a conjoined basis of (7), then

¡ C
−S
¢
is a conjoined basis as well and the

matrix
µ
C S
−S C

¶
is orthogonal if and only if the matrix C + iS is unitary. By

Theorem 1 the matrix Z =
µ
X1 X2
U1 U2

¶
can be expressed in the form

µ
X1 X2

U1 U2

¶
=

µ
H 0
G HT−1

¶µ
C S
−S C

¶
,

i.e., X1 = HC, X2 = HS. Consequently, detX1, detX2 have the same zero
points as detC and detS, respectively. Tracing the movement of the eigenvalues of
V around the unit circle and using Theorem 2, we get the following Sturmian-type
theorem. The original proof of this statement, based of the investigation of the
index of the quadratic functional associated with (3), can be found in [19].

Theorem 3 Suppose that the matrix B is nonnegative definite and that (3) is iden-
tically normal on an interval I ⊂ R. Let ¡X1

U1

¢
,
¡X2
U2

¢
be conjoined bases of (3) such

that the (constant) matrix XT
1 U2−UT

1 X2 is nonsingular. If n1, n2 denote the number
of zeros of detX1 and detX2 in an interval I0 ⊂ I, respectively, then |n1−n2| ≤ n.

We conclude this section with some remarks related to the Bohl transformation
for (1) and (3).

(i) The Bohl transformation is one of the basic tools of the transformation theory
of Sturm-Liouville differential equation (1) which is elaborated in [9]. Combining
the transformation described in Proposition 1 with the transformation of the inde-
pendent variable, every Sturm-Liouville equation (1) can be transformed into the
equation y00 + y = 0 considered on a suitable interval, and this equation (together
with the associated interval) is taken as a canonical representative of the class of
mutually transformable Sturm-Liouville equations. For details we refer to [9].
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(ii) The Bohl transformation is also a basis for many oscillation criteria for (1),
due to the fact that equation (2), which results from (1) upon the Bohl transfor-
mation, is oscillatory if and only ifZ ∞

q(t) dt =

Z ∞ dt

r(t)(x21(t) + x22(t))
=∞, (11)

where x1, x2 are linearly independent solutions of (1). Of course, the function h
which transforms (1) into (2) is generally unknown, but using suitable estimates
for integrands in (11), one can get explicit (non)oscillation criteria, for details see
[20, 22].

(iii) Oscillation of Hamiltonian systems (3) and their Bohl-type transformation
is closely related to the concept of the argument of a symplectic matrix, generally,
to concepts of the symplectic geometry like Lagrange plane, Maslow cycle, etc., we
refer to [18, 23] for details. In particular, the Lidskii [18] argument of symplectic
matrix is closely related to detV (t), where V appears in (9).

3 Symplectic difference systems

Consider the symplectic difference system

zk+1 = Skzk, k ∈ N, S =

µA B
C D

¶
, (12)

where z =
¡
x
u

¢ ∈ R2n, x, u ∈ Rn, A,B, C,D : N → Rn×n, and S : N → R2n×2n is a
symplectic matrix for every k ∈ N. Since the symplectic matrices form a subgroup
of nonsingular matrices (with respect to matrix multiplication), a 2n × 2n matrix
solution Z of (12) is symplectic whenever the initial matrix Z0 is symplectic.

Symplectic difference systems cover a large variety of difference equations and
systems. Among them the Sturm-Liouville second order equation

∆(rk∆xk) + ckxk+1 = 0, rk 6= 0, (13)

the higher order self-adjoint equation

nX
ν=0

(−1)ν∆ν
³
r
[ν]
k ∆

νyk+n−ν
´
= 0, r

[n]
k 6= 0, (14)

and the linear Hamiltonian difference system

∆xk = Akxk+1 +Bkuk, ∆uk = Ckxk+1 −AT
k uk, (15)
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with A,B,C ∈ Rn×n, B,C symmetric (i.e., B = BT , C = CT ) and I−A invertible.
Indeed, concerning e.g. equation (13), this equation can be written as (15) using
the substitution u = r∆x, the substitution which converts (14) into (15) can be
found e.g. in [1]. Expanding the forward differences on the left-hand side of (15),
this system can be written in the formµ

xk+1
uk+1

¶
=

µ
Ãk ÃkBk

CkÃk CkÃkBk + I −AT
k

¶µ
xk
uk

¶
, (16)

where Ã = (I −A)−1, and symplecticity of the matrix in (16) can be verified by a
direct computation.

The discrete version of the Bohl transformation remained an open problem for
rather long time, even in the classical setting for Sturm-Liouville equation (13).
One of the reasons is that no difference equation of the form (13) is self-reciprocal.
Indeed, if we denote u = r∆x (the same substitution is used in the continuous case
in computing the reciprocal equation), then u is a solution of the equation

∆

µ
1

ck
∆uk

¶
+

1

rk+1
uk+1 = 0,

and this shows that really no equation of the form (13) is self-reciprocal, i.e., we
have in disposal no Sturm-Liouville difference equations which plays the same role
as equation (2) in the continuous case.

A starting point to investigate the problem of the discrete Bohl transformation
from the “right point of view” was the publication of the paper [2], where the basic
properties of the so-called trigonometric difference systemµ

yk+1
zk+1

¶
=

µ Pk Qk

−Qk Pk

¶µ
yk
zk

¶
, (17)

are investigated, here y, z ∈ Rn and
µ P Q
−Q P

¶
∈ R2n×2n is symplectic and orthog-

onal matrix, i.e., its block n× n matrix entries satisfy

PTQ = QTP, PTP +QTQ = I.

The following statement is a discrete extension of the Bohl transformation presented
in Theorem 1, its proof can be found in [7].

Theorem 4 Let Z =
µ
X X̃

U Ũ

¶
be a symplectic fundamental matrix of (12), H,G

be n× n matrices given by HHT = XXT + X̃X̃T , G = (UXT + ŨX̃T )HT−1. The
transformation (6) transforms (12) into (17) with the matrices P,Q given by

Pk = H−1
k+1(AkHk + BkGk), Q = H−1

k+1BkHT−1
k .
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Moreover, the matrix H can be chosen in such a way that the matrix Q is symmetric
and nonnegative definite.

When we apply the previous statement to (13), this equation can be transformed
into the system

yk+1 = pkyk + qkzk, zk+1 = −qkyk + pkzk, (18)

where the sequences p, q satisfy p2k + q2k = 1 and qk > 0. Then there exists a unique
ϕk ∈ (0, π) such that p = cosϕ, q = sinϕ andcos³Pk−1 ϕj

´
sin
³Pk−1 ϕj

´
sin
³Pk−1 ϕj

´
− cos

³Pk−1 ϕj
´

is a fundamental matrix of (18). Consequently, system (18) is oscillatory (i.e., the
first component y of any solution

¡
y
z

¢
becomes zero or changes its sign infinitely

many times in any discrete interval of the form [N,∞)) if and only if
∞X

ϕk =
∞X
arccot

pk
qk
=∞, (19)

where arccot is the inverse function of the function cot ϕ = cosϕ
sinϕ .

Recall that according to [6], system (12) is said to be nonoscillatory if there
exists m ∈ N such that for every N ∈ N, N > m, the 2n × n matrix solution

¡X
U

¢
given by the initial condition XN = 0, UN = I satisfies

KerXk+1 ⊆ KerXk and XkX
†
k+1Bk ≥ 0,

where Ker, †, and ≥ stand for the kernel, the Moore-Penrose generalized inverse,
and the nonnegative definiteness of the matrix indicated, see [6]. In the opposite
case (12) is said to be oscillatory. In the continuous case, a necessary and sufficient
condition for nonoscillation of controllable system (7) is known, it is condition
(10). Concerning (17), a necessary and sufficient condition for nonoscillation of this
system is an open problem and an equivalent characterization of nonoscillation is
known only when the matrix Q is positive definite, as shows the following statement
proved in [7].

Theorem 5 Suppose that the matrix Q in (17) is symmetric and positive definite.
Then this system is nonoscillatory if and only if

∞X
arccot

h
λ[1](Q−1k Pk)

i
<∞, (20)

where λ[1] denotes the least eigenvalue of the matrix indicated.
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To find an extension of this statement to a general system (17), where the
matrix Q is allowed to be singular (which is e.g. the case when (17) results upon
the discrete Bohl transformation applied to (12) corresponding to (14)) is a subject
of the present investigation.

4 Symplectic dynamic systems on time scales

A time scale T is any closed subset of the set of real numbers R. On a time scale T
we define the following operators and concepts:

σ(t) := inf{s ∈ T, s > t}, ρ(t) := sup{s ∈ T, s < t}
are the forward and backward shift operators. A point t ∈ T is said to be left-dense
(ld point) if ρ(t) = t, right-dense (rd point) if σ(t) = t, left-scattered (ls point) if
ρ(t) < t, right-scattered (rs point) if σ(t) > t, and it is said to be dense if it is rd or
ld. The graininess µ of a time scale T is defined by µ(t) := σ(t)− t. For a function
f : T→ R (the range R of f may be replaced by any Banach space) the generalized
derivative f∆(t) is defined as follows. For every ε > 0 there exists a neighborhood
U of t in T such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U.

If T = R, then σ(t) = t, µ(t) = 0 and f∆ = f 0 is the usual derivative. In case T = Z,
we have σ(t) = t+ 1, µ(t) = 1 and f∆ = ∆f is the forward difference operator.

A function f : [a, b] → R is said to be rd-continuous if it is continuous at
each rd point and there exists a finite left limit at all ld points, and this function
is said to be rd-continuously differentiable if its generalized derivative exists and
it is rd-continuous. To every rd-continuous function f there exists its generalized
antiderivative– a function F such that F∆ = f . Using the antiderivative we defineR b
a f(t)∆t := F (b)− F (a). A function f is said to be regressive if 1 + µ(t)f(t) 6= 0
(the mapping x 7−→ (id+µ(t)f(t))x is invertible if the range of f is a Banach space
of linear operators). The initial value problem for the linear dynamic equation

z∆ = g(t)z, z(t0) = z0

with a regressive and rd-continuous function g has the unique solution which de-
pends continuously on the initial condition. For basic concepts of time scale theory
we refer e.g. to [8].

A symplectic dynamic system on a time scale T is the first order linear system

z∆ = S(t)z, z =

µ
x

u

¶
, S =

µA B
C D

¶
, (21)
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where x, u : T→ Rn, A,B, C,D : T→ Rn×n and S satisfies
JS(t) + ST (t)J + µ(t)ST (t)JS(t) = 0. (22)

Observe that (22) reduces to (4) if T = R and to the symplecticity of the matrix
I + S if T = Z. Consequently, symplectic dynamic systems (21) cover both linear
Hamiltonian differential systems (3) and symplectic difference systems (12).

In [12] we have investigated oscillatory properties of the Sturm-Liouville dy-
namic equation

(r(t)x∆)∆ + c(t)xσ = 0, r(t) 6= 0, (23)

where r, c are rd-continuous functions and xσ = x ◦ σ, i.e., xσ(t) = x(σ(t)). Oscil-
latory properties of (23) are defined using the concept of the generalized zero of a
solution x; we say that t is a generalized zero of x if r(t)x(t)xσ(t) ≤ 0. In contrast
to the continuous case T = R (and in agreement with the discrete case R = Z), we
generally need no sign restriction on the function r. However, to get a “reasonable”
oscillation theory, we need the additional restriction

r(t) > 0 for rd t and lim
s→t− r(t) =: l > 0 exists finite for ld t, (24)

see [12]. In that paper we have proved that under (24) equation (23) can be trans-
formed (via a transformation preserving oscillatory properties of transformed equa-
tions) into an equation of the same form with r(t) > 0 for every t ∈ T. In the next
statement, which is a new result, we extend this statement to (21).

Theorem 6 Suppose that the matrix B in (21) admits the polar decomposition
B(t) = T (t)B(t), where B is symmetric and nonnegative definite and T is an or-
thogonal matrix, such that the matrix

A(t) =

(
T (t)−I
µ(t) if µ(t) > 0,

0 if µ(t) = 0,
(25)

is rd-continuous. Then there exists an orthogonal matrix H such that the transfor-
mation (6) with G = 0 transforms (21) into the system of the same form with the
matrix B symmetric and nonnegative definite.
Proof. First of all observe that the matrix A defined by (25) satisfies

A(t) +AT (t) + µ(t)AT (t)A(t) = 0 (26)

and that I + µA is orthogonal, hence A is regressive. Let H be the solution of the
matrix dynamic equation

H∆ = A(t)H, H(t0) = I, (27)
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where t0 is a point in the time scale interval under consideration. According to
(26), the matrix H is orthogonal for every t ∈ I. Indeed, we have

(HTH)∆ = HTH∆ + (HT )∆Hσ = HTAH +HTAT (H + µH∆)

= HT (A+AT + µATA)H = 0,

and since H(t0) = I, we have HT (t)H(t) = I. The transformation x = Hy,
u = HT−1z = Hz from our theorem transforms (12) into the system with the
matrix

(Hσ)−1BHT−1 = (HT )σBH
instead of B (as can be verified by a direct computation), and

(HT )σBH = [HT + µ(HT )∆]BH = HT (I + µAT )BH = HTTTTBH

= HTBT

and the last matrix is symmetric and nonnegative definite. ¤

Remark 1 Observe that in the matrix case (in contrast to the scalar case men-
tioned at the beginning of this section, compare (24)), the assumption on rd-
continuity of the matrix A cannot be replaced by a weaker assumption

B(t) is positive definite at rd points and
lims→t− B(s) =: L exists finite and L is positive definite for ld t.

Indeed, let T =
©±1

n

ª∞
n=1
∪ {0}, and for t ∈ T let

B(t) =
µ
cos t sin t
− sin t cos t

¶
.

Then B(0) = I is positive definite and continuous at this point. However, the polar
decomposition of B is B = B · I since B is orthogonal, and

lim
t→0+

B(t)− I

µ(t)
= lim

n→∞

µ
1

n− 1 −
1

n

¶−1 ·
B
µ
1

n

¶
− I

¸
does not exists (finite),

i.e., this matrix is not rd-continuous, and hence condition (26) is not satisfied.

Now we turn our attention to the Bohl transformation for symplectic dynamic
systems. Roughly speaking, this transformation transforms symplectic dynamic
(21) into a symplectic system whose fundamental matrix is not only symplectic,
but also orthogonal. The first part of the next statement was proved in [13], while
the second one is a new result.



382 Ondřej Došlý

Theorem 7 Let Z =
µ
X X̃

U Ũ

¶
be a symplectic fundamental matrix of (21), H,G

be n × n matrices defined in the same way as in Theorem 4. Transformation (6)
transforms (21) into the systemµ

y

z

¶∆

=

µ P(t) Q(t)
−Q(t) P(t)

¶µ
y

z

¶
, (28)

where the matrix Ŝ =
µ P Q
−Q P

¶
satisfies the identity ŜT (t)+Ŝ(t)+µ(t)ŜT (t)Ŝ(t) =

0, i.e., the fundamental matrix of (28) is orthogonal for t ∈ I whenever it is orthog-
onal at one point of I. Moreover, if the matrix B in (21) is symmetric and positive
definite on I, the matrix H can be taken in such a way that the matrix Q which is
given by the formula Q = (Hσ)−1BHT−1 is also symmetric and positive definite.

Proof. We will prove the second part of theorem only (starting with “Moreover”),
the first part is proved in [13]. The matrix H is of the form H = DG, where G is

an orthogonal matrix and D =
h
XXT + X̃X̃T

i1/2
, i.e., D is the unique symmetric

positive definite matrix for which D2 = XXT + X̃X̃T . Then

Q = (Hσ)−1BHT−1 = (GT )σ(D−1)σBD−1G
= (GT + µ(GT )∆)(D−1 + µ(D−1)∆)BD−1G.

Denote B̃ = D−1BD−1, this matrix is also symmetric and positive definite. We
have

(Dσ)−1BD−1 = B̃ + µ(D−1)∆BD−1 = B̃ + µK,
where K = (D−1)∆BD−1. Now we turn our attention to the polar decomposition
of the matrix (Dσ)−1BD−1, which is of the form

(Dσ)−1BD−1 = T B̂,
where T is an orthogonal matrix and B̂ is symmetric and positive definite. Using
the rules for computing the matrix square root we have

B̂ =
©
[(Dσ)−1BD−1]T [(Dσ)−1BD−1]ª1/2 = n(B̃ + µK)T (B̃ + µK)

o1/2
=

h
B̃2 + µ(K+KT ) + o(µ)

i1/2
= B̃ + µK̃+ o(µ),

here K̃ is an n× n matrix (its explicit form is not important) and o(µ) is a matrix
which tends to the zero matrix as µ → 0+. Now, substituting into the previous
computation we obtain

(Dσ)−1BD−1 = T B̂ = T [B̃ + µK̃+ o(µ)]



The Bohl transformation and its applications 383

and hence
(I + µ(D−1)∆D)B̃ = T (I + µK̃B̃−1 + o(µ)]B̃

which implies (using invertibility of B̃)

T = [I + µ(D−1)∆D][I + µK̃B̃−1 + o(µ)]−1

= I + µN + o(µ),

where N is an rd-continuous matrix, the explicit formula for this matrix is not
important. Consequently, the matrix A defined by (25) is rd-continuous.

Now, if the matrix G is defined as the solution of (27), this solution exits, it is
an orthogonal matrix and

Q = (GT )σ(Dσ)−1BD−1G = GT (I + µAT )T B̂G = GT B̂G,

i.e., this matrix is symmetric and positive definite what we needed to prove. ¤
We finish this paper with a remark concerning the oscillatory properties of

trigonometric symplectic dynamic systems. First consider the scalar case n = 1. If
the function Q satisfies the same condition as the function r in (24), system (28)
with n = 1 is oscillatory if and only ifZ ∞

ω(t)∆t =∞, (29)

where

ω(t) =


1

µ(t)arccot
h
r(t)
µ(t)(x1(t)x

σ
1 (t) + x2(t)x

σ
2 (t))

i
if µ(t) > 0,

1
r(t)(x21(t)+x

2
2(t))

if µ(t) = 0,

and x1, x2 are linearly independent solutions of (23), see [12]. Observe that this
condition really reduces to (11) if µ = 0 (T = R) and to (19) if µ = 1 (T = Z). It
is an open problem how this condition can be extended to (28). In particular, a
unifying time scale condition which covers both (10) and (20) is not known yet, to
find such a unifying condition is a subject of the present investigation.
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