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Abstract

The nonlinear Burgers’ equation is solved numerically by a method of
Galerkin using quintic B-splines as both shape and weight functions over the fi-
nite intervals. The same method is applied to the time-split Burgers’ equation.
Numerical comparison of results of both algorithms and some other published
numerical results is done by studying two standard problems.
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1 Introduction

The nonlinear Burgers’ equation has been used as test example for the numeri-
cal methods since this equation can be solved analytically for the various boundary
and initial conditions. So numerical results can be compared with analytical results.
Nowadays many of the numerical methods have been engaged to get the solution of
the Burgers’ equation with small viscosity. With these smaller constants, numerical
results are likely to produce the results having non-physical oscillations unless the
sizes of both space and time steps are unrealistically small. Some of the methods
such as collocation method and Petrov-Galerkin finite elements have been used to
obtain accurate numerical solutions for small viscosity coefficients. Spline functions,
which are a class of piecewise polynomials having continuity properties of up to the
degree lower than that of the spline functions play an important role of setting ap-
proximate functions. A type of splines known as B-splines are very much in use with
Galerkin method to have functional approximation of the unknowns in differential
equations. It provides the manageable band matrix system. This method previ-
ously has been implemented to get numerical solution of Burgers’ equation. The
finite element method for solutions of the Burgers’ equation based on a collocation
method using cubic splines as interpolation functions is set up by L. R. T. Gardner
et al. [2]. The same method with the cubic B-splines instead of quadratic B-splines
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in setting up the trial functions was proposed in the paper [3]. A method of the
least square was constructed to form a kind of quadratic B-splines finite element
method for the Burgers’ equation by the S. Kutluay et al. [9]. Various types of
B-spline collocation finite element schemes are also proposed in the papers [4, 5].

In this paper we have written an algorithm for the numerical solution of the
Burgers’ equation, which is a finite element approach using Galerkin method over
finite elements with quintic B-spline interpolation functions. This method will also
apply to the time split Burgers’ equation. The effect of both the quintic B-splines
and splitting of the equation are sought in the Galerkin method.

2 Quintic B-spline Galerkin method I (QBGM1)

The Burgers’ equation has the form

Ut + UUx − νUxx = 0, (1)

where ν > 0 is the coefficient of the kinematic viscosity and subscripts x and t
denote differentiation. Boundary conditions are selected from

U(a, t) = α1, U(b, t) = α2,

Ux(a, t) = 0, Ux(b, t) = 0, t ∈ (0, T ], (2)

Uxx(a, t) = 0, Uxx(b, t) = 0.

An initial condition will be prescribed in later sections.

Applying the Galerkin technique to Eq. (1) with weight functions W yields the
integral equation

bZ
a

W (Ut + UUx − νUxx) dx = 0. (3)

We consider the mesh a = x0 < x1 < · · · < xN = b as a uniform partition of the
solution domain a ≤ x ≤ b by the knots xm and h = xm − xm−1, m = 1, . . . , N ,
throughout the paper.
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Let Qm(x), m = −2, . . . , N + 2,

Qm(x) =

1

h5



(x− xm−3)5, [xm−3, xm−2],
(x− xm−3)5 − 6(x− xm−2)5, [xm−2, xm−1],
(x− xm−3)5 − 6(x− xm−2)5 + 15(x− xm−1)5, [xm−1, xm],
(x−xm−3)5 − 6(x−xm−2)5 + 15(x−xm−1)5 − 20(x−xm)5, [xm, xm+1],

(x−xm−3)5 − 6(x−xm−2)5 + 15(x−xm−1)5 − 20(x−xm)5
+15(x− xm+1)

5, [xm+1, xm+2],

(x−xm−3)5 − 6(x−xm−2)5 + 15(x−xm−1)5 − 20(x−xm)5
+15(x− xm+1)

5 − 6(x− xm+2)
5, [xm+2, xm+3]

0, otherwise,
(4)

be quintic B-splines with the knots xm, m = −5, . . . , N + 5 [1]. The set of quintic
B-splines Qm(x) forms a basis over the region a ≤ x ≤ b. The global approximation
defined using the quintic B-splines

UN(x, t) =
N+2X
m=−2

δm(t)Qm(x), (5)

will be sought to the analytical solution U . In this approximate solution δm is a
time-dependent parameter to be determined from the quintic Galerkin form of the
Eq. (3). The nodal values of U and its derivatives of up to fourth order are given
in terms of the parameters δm from the use of the splines (4) and the trial solution
(5)

Um = U(xm) = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2,

U 0m = U 0(xm) =
5

h
(δm+2 + 10δm+1 − 10δm−1 − δm−2) ,

U 00m = U 00(xm) =
20

h2
(δm+2 + 2δm+1 − 6δm + 2δm−1 + δm−2) ,

U 000m = U 000(xm) =
60

h3
(δm+2 − 2δm+1 + 2δm−1 − δm−2) ,

U 0000m = U 0000(xm) =
120

h4
(δm+2 − 4δm+1 + 6δm − 4δm−1 + δm−2) .

(6)

A local coordinate system can be defined using the mapping relation ξ = x−xm
to transform the finite element [xm, xm+1] into the interval [0, h]. The expressions
of quintic B-spline shape functions that are independent of the element position are
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obtained with the relation of the global and local coordinates relation over [0, h] as

Qm−2 = 1− 5 ξh + 10
³
ξ
h

´2 − 10³ ξ
h

´3
+ 5

³
ξ
h

´4 − ³ ξ
h

´5
,

Qm−1 = 26− 50 ξh + 20
³
ξ
h

´2
+ 20

³
ξ
h

´3 − 20³ ξ
h

´4
+ 5

³
ξ
h

´5
,

Qm = 66− 60
³
ξ
h

´2
+ 30

³
ξ
h

´4 − 10³ ξ
h

´5
,

Qm+1 = 26 + 50 ξh + 20
³
ξ
h

´2 − 20³ ξ
h

´3 − 20³ ξ
h

´4
+ 10

³
ξ
h

´5
,

Qm+2 = 1 + 5 ξh + 10
³
ξ
h

´2
+ 10

³
ξ
h

´3
+ 5

³
ξ
h

´4 − 5³ ξ
h

´5
,

Qm+3 =
³
ξ
h

´5
.

(7)

From the quintic B-splines covering six successive finite elements, typical finite ele-
ments are covered by the six quintic B-spline shape functions. So the approximation
reduced over the element [xm, xm+1] is

Ue
N = U(ξ, t) =

m+3X
i=m−2

δi(t)Qi(ξ), (8)

where δi, i = m− 2, . . . ,m+ 3, act as element parameters.
Taking the weight functions with quintic B-spline shape functions and substi-

tuting element trial function Ue
N in the integral equation (3) over the element [0, h]

leads to

m+3P
j=m−2

(Ã
hR
0

QiQj dξ

!
◦
δj +

m+3P
k=m−2

"Ã
hR
0

QiQjQ
0
k dξ

!
δk

#
δj

−ν
Ã

hR
0

QiQ
00
j dξ

!
δj

)
,

(9)

where j and k take only the values m − 2, m − 1, m, m + 1, m + 2, m + 3 and
m = 0, 1, . . . ,N − 1, and ◦ denotes derivative with respect to time, which in the
matrix form is

Ae
◦
δe + (δe)TLeδe − νDeδe, (10)

where the element matrices A, D are 6× 6, the matrix L is 6× 6× 6, δe =
(δm−2, δm−1, δm, δm+1, δm+2, δm+3) and

Ai,j =
hR
0

QiQj dξ, D =
hR
0

QiQ
00
j dξ, Li,j,k =

hR
0

QiQjQ
0
k dξ. (11)
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The matrix L is organized to be in the dimension 6× 6 as matrix B

Bi,j =
m+3X

k=m−2
Lijkδk, (12)

so the matrix Be is expressed as depending on the element parameter δe.
Combining all element matrices for each element we obtain a system of nonlinear

ordinary differential equation:

A
◦
δ+(B− νD)δ = 0 (13)

where the global element parameter is

δ = (δ−2, δ−1, δ0, . . . , δN+1, δN+2)T . (14)

If we use the Crank-Nicolson discretization formula for the vector of element
parameter δ and the usual finite difference equation for the time derivatives para-

meters
◦
δ in the equation:

δ =
δn + δn+1

2
,

◦
δ =

δn+1−δn
∆t

, (15)

we reach a nonlinear recurrence relation for the time parameters δ:

(2A+∆tB− ν∆tD) δn+1 = (2A−∆tB+ ν∆tD) δn. (16)

This system is made up of (N + 5) equations in (N + 5) unknown parameters.
We can obtain a solvable system by imposing the boundary conditions at the
left end of the region U(a, t) = Uxx(a, t) = 0 and at the right end of the region
Ux(b, t) = Uxx(b, t) = 0 to eliminates the parameters δn−2, δ

n
−1, δ

n
N+1, δ

n
N+2. An 11-

banded matrix system at every time step is solved with Gauss elimination method.
Before moving the calculation of the next time step approximation for the time
parameters, iteration should be repeated two or three times using the following
corrector procedure

(δ∗)n+1 = δn +
1

2
(δn+1−δn). (17)

To start the iteration of the recurrence relation of the system (16), the initial pa-
rameter vector δ0 must be determined using the following initial and boundary
conditions:

(UN)x(a, 0) = 0, (UN)x(b, 0) = 0,
(UN)xx(a, 0) = 0, (UN )xx(b, 0) = 0,
UN(x, 0) = U(xm, 0), m = 0, . . . , N.

(18)

Once the initial vector of parameters has been calculated, time evaluation of
UN can be determined from the time evolution of the vector δn, which is found by
solving the recurrence relation (16).



300 İ. Dağ et al.

3 Quintic B-spline Galerkin method II (QBGM2)

The Burgers’ equation is split for the time variable as

Ut + 2UUx = 0,
Ut − 2νUxx = 0.

(19)

An application of the Galerkin method to Eqs. (19) with weight functions W
produces the weak form

bZ
a

W (Ut + 2UUx) dx = 0,

bZ
a

W (Ut − 2νUxx) dx = 0.

(20)

Replacing the weight function W and the unknown values U by B-spline shape
functions (7) and trial solution (8) respectively we obtain an element contribution
to the integral equation (20) as

m+3P
j=m−2

(Ã
hR
0

QiQj dξ

!
◦
δj + 2

m+3P
k=m−2

"Ã
hR
0

QiQjQ
0
k dξ

!
δk

#
δj

)
,

m+3P
j=m−2

(Ã
hR
0

QiQj dξ

!
◦
δj − 2ν

Ã
hR
0

QiQ
00
j dξ

!
δj

)
,

(21)

where j and k take only the values m − 2, m − 1, m, m + 1, m + 2, m + 3 and
m = 0, 1, . . . , N − 1, and ◦ denotes derivative with respect to time. This result has
the matrix form:

Ae
◦
δe + 2Leδe,

Ae
◦
δe − 2νDeδe,

(22)

where the element matrices A, D are 6× 6, the matrix L is 6× 6× 6, δe =
(δm−2, δm−1, δm, δm+1, δm+2, δm+3) and

Ai,j =
hR
0

QiQj dξ, D =
hR
0

QiQ
00
j dξ, Lijk =

hR
0

QiQjQ
0
k dξ. (23)

We use the associated 6× 6 matrix B instead of L in our algorithm:

Bi,j =
m+3X

k=m−2
Lijkδ

e. (24)
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The assembly of the element equations (22) leads to the first order matrix equation

A
◦
δ+2Bδ = 0, (25)

A
◦
δ−2νDδ = 0, (26)

where δ = (δ−2, δ−1, δ0, . . . , δN+1,δN+2)T is a global element parameter vector and
A,B,D are derived from the corresponding element matrices Ae, Be,De.

To discretize the above system, the time parameter vector δ in the equation
is interpolated using the Crank-Nicolson approximation and the time derivative

parameters vector
◦
δ in the equation is interpolated using the usual finite difference

approximation between times n and n+ 1/2 as follows:

δm=
δnm + δ

n+1/2
m

4
,

◦
δm =

δ
n+1/2
m −δnm
∆t

. (27)

We will have the following recurrence relationship:

(2A+∆tB) δn+1/2 = (2A−∆tB) δn. (28)

Similarly, Eq. (26) is discretized by applying the Crank-Nicolson method for the
time parameters vector δ and a difference approximation for the time derivatives

vector
◦
δ between the times n+ 1/2 and n+ 1 as follows:

δm =
δ
n+1/2
m + δn+1m

4
,

◦
δm =

δn+1m − δ
n+1/2
m

∆t
, (29)

so that we will have the recurrence relationship

(2A− ν∆tD) δn+1 = (2A+ ν∆tD) δn+1/2. (30)

We have systems (28), (30) having (N+5) equations containing (N+5) unknown
parameters δn = (δn−2, δ

n
−1, . . . , δ

n
N+2). The imposition of the boundary conditions

at both ends of the region U(a, t) = Uxx(a, t) = 0 and Ux(b, t) = Uxx(b, t) = 0 allows
to eliminate the parameters δn−2, δ

n
−1, δ

n
N+1, δ

n
N+2 from the systems (28), (30) so that

the solution set becomes an 11 banded (N + 5) × (N + 5) matrix equation. This
system is solved by the way of Gauss elimination procedure. The time evolution can
be found by first implementing the recurrence relationship (28) to find the element
parameters δn+1/2 from δn and the second recurrence relationship to find δn+1 from
δn+1/2. So the time evolution of the time parameters and the nodal values from the
equations are determined by the above mentioned iteration procedure after finding
initial parameters δ0 as in the previous section.
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4 Numerical examples

The two test problems are studied in order to demonstrate the robustness and
numerical accuracy of the proposed methods. Accuracy is measured by using L∞
and L2 error norms

L∞ = |U − UN |∞ = max
j
|Uj − (UN)

n
j |,

L2 = |U − UN |2 = h
NX
j=0

|(Uj − (UN)
n
j )
2|

and |e|1 error norms

|e|1 = 1

N

N−1X
i=1

¯̄̄
Uj − (UN )

n
j

¯̄̄
|Uj | .

L2 and L∞ error norms are used for numerical example 1 and comparison is made
with results of the paper [2]. We used the |e|1-norm for the example 2 to make the
comparison with a result of the paper [9].

(a) Burgers’ equation has the following form of the analytical solution.

U(x, t) =

x

t

1 +

r
t

t0
exp(

x2

4νt
)

, t ≥ 1, 0 ≤ x ≤ 1, (31)

where t0 = exp(
1

8ν
). The propagation of the shock is represented with the equation

above. The initial shock which is taken when t = 1 in Eq. (31) will be observed as
time progresses. To make comparison with earlier study [2], computation is done
with parameters ν = 0.005, h = 0.005 and∆t = 0.01 over the problem domain [0, 1].
Table 1 is a comparison of the exact solution with numerical values of both schemes.
Comparisons are presented at time t = 1.7, 2.4 and 3.1 only. The accuracy in the
L2 norm obtained is measured as 2.9 ×10−5 at time t = 1.7, 2.5 ×10−5 at time
t = 2.4 and 1.5 ×10−4 at time t = 3.1 for the QBGM1. When the same method
is applied to the split Burgers’ equation, an error norm is obtained such as 3.5
×10−4 at time t = 1.7, 2.4 ×10−4 at time t = 2.4 and 1.9 ×10−4 at time t = 3.1
for the QBGM2, especially error becomes larger at early times. In the same table,
a comparison with the collocation method using cubic splines [2] shows that the
proposed methods provide a little better results for the L2 and L∞ error norms.

The propagation of the shock is visualized at some times in the Figs. (1), from
which it is seen that the initial shock becomes steadier as the program runs. At
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Table 1: Comparison of results at different times for ν = 0.005 with h = 0.005
and ∆t = 0.01

t = 1.7 t = 1.7 t = 1.7 t = 2.4 t = 2.4 t = 2.4
x QBGM1 QBGM2 Exact QBGM1 QBGM2 Exact
0.1 .058823 .058822 .058823 .041666 .041666 .041666
0.2 .117645 .117644 .117645 .083332 .083331 .083332
0.3 .176458 .176458 .176458 .124995 .124995 .124995
0.4 .235166 .235170 .235168 .166640 .166639 .166640
0.5 .291875 .291907 .291904 .208111 .208115 .208114
0.6 .295812 .294973 .295910 .247396 .247402 .247417
0.7 .041931 .042949 .041929 .252093 .251668 .252172
0.8 .000648 .000669 .000646 .072996 .073817 .073025
0.9 .000005 .000005 .000005 .003023 .003115 .003023
L2 × 103 0.02900 0.35001 .02581 0.24430
L2 × 103([2]) 0.857 0.423
L∞ × 103 0.11314 1.21155 .07877 0.80766
L∞ × 103([2]) 2.576 1.242

t = 3.1 t = 3.1 t = 3.1
x QBGM1 QBGM2 Exact
0.1 .032258 .032257 .032258
0.2 .064515 .064515 .064515
0.3 .096771 .096771 .096771
0.4 .129021 .129021 .129021
0.5 .161230 .161231 .161231
0.6 .193123 .193127 .193127
0.7 .221847 .221836 .221867
0.8 .215071 .214756 .215135
0.9 .070789 .071390 .070874
L2 × 103 0.15713 0.19296
L2 × 103([2]) 0.235
L∞ × 103 1.09575 0.94251
L∞ × 103([2]) 0.688
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a) QBGM1 b) QBGM2

Figure 1: ν = 0.005, h = 0.005, ∆t = 0.01

a) QBGM1 b) QBCM2

Figure 2: Error (|numerical− analytic solution|) at time t = 3.1 with ν = 0.005

time t = 3.1, the error distribution is drawn over the domain in the Figs. 2 and
there appears to be the highest error about the right-hand boundary position.

(b) Secondly we consider the Burgers’ equation with initial condition

U(x, 0) = sin(πx), 0 ≤ x ≤ 1, (32)

and boundary conditions

U(0, t) = U(1, t) = 0, t ≥ 0. (33)
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The exact solution was found in terms of infinite series by Cole [6]

U(x, t) =

4πν
∞X
j=1

jIj(
1

2πν
) sin(jπx) exp(−j2π2νt)

I0(
1

2πν
) + 2

∞X
j=1

Ij(
1

2πν
) cos(jπx) exp(−j2π2νt)

(34)

where Ij are the modified Bessel functions. This problem gives the decay of sinu-
soidal disturbance.

At first, computation is carried out with parameters: viscosity constant ν = 1,
time step ∆t = 0.00001 and various space steps at time t = 0.1. A comparison
of the results for different space steps obtained by the present methods with exact
solutions together with error norm is shown in Tables 2—3. The numerical solutions
are seen to be satisfactory with the exact solutions. Errors in terms of the |e|1
norm are also documented in the same tables. The numerical results for various
values of the viscosity are documented in Tables 4—5. Agreement between both
numerical schemes and exact values appears very satisfactory through illustration
in Figs. 3a—4a. As it is known that the exact solutions for ν < 10−2 are not practical
because of the slow convergence of the infinite series, so the numerical solutions are
not compared with the exact solution in the Tables 4—5. Our numerical results for
ν = 10−4 confirms the numerical results obtained by studies [2] and depicted in the
Figs. 3b—4b. Numerical results for ν = 10−4 demonstrate a very sharp front near
the left boundary at earlier times and as time progresses, sharpness and amplitude

Table 2: Comparison of results at t = 0.1 for ν = 1, ∆t = 0.00001
and various mesh sizes (QBGM1)

x h = 0.1 h = 0.05 h = 0.025 h = 0.0125 h = 0.00625 Exact
0.1 0.10301 0.10817 0.10915 0.10947 0.10953 0.10954
0.2 0.20623 0.20831 0.20941 0.20973 0.20978 0.20979
0.3 0.28729 0.29053 0.29156 0.29184 0.29189 0.29190
0.4 0.34471 0.34677 0.34765 0.34788 0.34792 0.34792
0.5 0.36849 0.37065 0.37136 0.37154 0.37157 0.37158
0.6 0.35690 0.35835 0.35888 0.35902 0.35904 0.35905
0.7 0.30819 0.30942 0.30979 0.30989 0.30990 0.30991
0.8 0.22680 0.22751 0.22775 0.22781 0.22782 0.22782
0.9 0.12013 0.12054 0.12065 0.12068 0.12069 0.12069
|e|1 0.01306 0.00362 0.00094 0.00016 0.00002
|e|1([9]) 0.012165 0.006941 0.003651 0.001858 0.000928



306 İ. Dağ et al.

Table 3: Comparison of results at t = 0.1 for ν = 1, ∆t = 0.00001
and various mesh sizes (QBGM2)

x h = 0.1 h = 0.05 h = 0.025 h = 0.0125 h = 0.00625 Exact
0.1 0.10260 0.10787 0.10895 0.10942 0.10952 0.10954
0.2 0.20599 0.20798 0.20921 0.20968 0.20978 0.20979
0.3 0.28699 0.29024 0.29139 0.29180 0.29188 0.29190
0.4 0.34448 0.34652 0.34750 0.34784 0.34791 0.34792
0.5 0.36828 0.37045 0.37125 0.37151 0.37157 0.37158
0.6 0.35675 0.35820 0.35880 0.35900 0.35904 0.35905
0.7 0.30807 0.30931 0.30973 0.30987 0.30990 0.30991
0.8 0.22673 0.22744 0.22771 0.22780 0.22781 0.22782
0.9 0.12009 0.12051 0.12064 0.12068 0.12068 0.12069
|e|1 0.01392 0.00441 0.00142 0.00028 0.00005

Table 4: Comparison of results at different times (QBGM1)
ν = 1.0, 0.1 and 0.01 with h = 0.0125 and ∆t = 0.0001.
ν = 1 ν = 1 ν = 0.1 ν = 0.1 ν = 0.01 ν = 0.01 ν = 10−4

x t Numer. Exact Numer. Exact Numer. Exact Numer.
0.25 0.4 0.01357 0.01357 0.30885 0.30889 0.34188 0.34191 0.34481

0.6 0.00189 0.00189 0.24070 0.24074 0.26889 0.26896 0.27103
0.8 0.00026 0.00026 0.19564 0.19568 0.22139 0.22148 0.22300
1.0 0.00004 0.00004 0.16253 0.16256 0.18809 0.18819 0.18935
3.0 0.00000 0.00000 0.02719 0.02720 0.07504 0.07511 0.07533

0.50 0.4 0.01923 0.01924 0.56961 0.56963 0.66071 0.66071 0.66787
0.6 0.00267 0.00267 0.44718 0.44721 0.52941 0.52942 0.53425
0.8 0.00037 0.00037 0.35921 0.35924 0.43913 0.43914 0.44255
1.0 0.00005 0.00005 0.29189 0.29192 0.37440 0.37442 0.37694
3.0 0.00000 0.00000 0.04019 0.04021 0.15013 0.15018 0.15062

0.75 0.4 0.01363 0.01363 0.62543 0.62544 0.91026 0.91026 0.92809
0.6 0.00189 0.00189 0.48720 0.48721 0.76724 0.76724 0.77739
0.8 0.00026 0.00026 0.37390 0.37392 0.64739 0.64740 0.65385
1.0 0.00004 0.00004 0.28745 0.28747 0.55605 0.55605 0.56054
3.0 0.00000 0.00000 0.02976 0.02977 0.22478 0.22481 0.22582
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Fig. 3a: ν = 1, h = 0.1, ∆t = 0.01

(QBGM1)
Fig. 3b: ν = h = ∆t = 10−4 (QBGM1)

Table 5: Comparison of results at different times (QBGM2)
ν = 1.0, 0.1 and 0.01 with h = 0.0125 and ∆t = 0.0001.
ν = 1 ν = 1 ν = 0.1 ν = 0.1 ν = 0.01 ν = 0.01 ν = 10−4

x t Numer. Exact Numer. Exact Numer. Exact Numer.
0.25 0.4 0.01357 0.01357 0.30882 0.30889 0.34187 0.34191 0.34481

0.6 0.00189 0.00189 0.24066 0.24074 0.26887 0.26896 0.27103
0.8 0.00026 0.00026 0.19561 0.19568 0.22136 0.22148 0.22300
1.0 0.00004 0.00004 0.16250 0.16256 0.18806 0.18819 0.18935
3.0 0.00000 0.00000 0.02718 0.02720 0.07502 0.07511 0.07533

0.50 0.4 0.01923 0.01924 0.56960 0.56963 0.66071 0.66071 0.66787
0.6 0.00267 0.00267 0.44716 0.44721 0.52941 0.52942 0.53425
0.8 0.00037 0.00037 0.35919 0.35924 0.43912 0.43914 0.44255
1.0 0.00005 0.00005 0.29186 0.29192 0.37439 0.37442 0.37694
3.0 0.00000 0.00000 0.04018 0.04021 0.15011 0.15018 0.15062

0.75 0.4 0.01363 0.01363 0.62540 0.62544 0.91027 0.91026 0.92809
0.6 0.00189 0.00189 0.48717 0.48721 0.76724 0.76724 0.77739
0.8 0.00026 0.00026 0.37387 0.37392 0.64740 0.64740 0.65385
1.0 0.00004 0.00004 0.28742 0.28747 0.55605 0.55605 0.56054
3.0 0.00000 0.00000 0.02976 0.02977 0.22476 0.22481 0.22582
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Fig. 4a: ν = 1, h = 0.1, ∆t = 0.01

(QBGM2)
Fig. 4b: ν = h = ∆t = 10−4 (QBGM2)

of the wave front start to decay. These properties of the numerical solutions from
the QBGM1 and QBGM2 are in very good agreement with the finding obtained by
Varoğlu and Finn [7], Kakuda and Tosaka [8].

The numerical algorithm based on Galerkin method with quintic B-splines as
weight and trial functions is constructed for both Burgers’ and the time-split Burg-
ers’ equation. The numerical methods appear to be capable of producing numerical
solutions of high accuracy for the solution of the Burgers’ equation. We have also
found that there is not much effect of the time-splitting of Burgers’ equation on
getting the numerical solutions of the Burgers’ equation for the quintic B-spline
finite element method. The experimental results of both schemes are much more
satisfactory in comparison with the previous results [2, 4, 9, 5]. So it can be con-
cluded that the quintic B-spline finite element methods is both efficient and reliable
for getting the numerical solutions of the partial differential equations.
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