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Abstract

This paper is devoted to the study of the linear nonautonomous dynamical
systems (LNDS) possessing the property of asymptotic (uniform asymptotic,
uniform exponential) stability. We establish the relation between different
types of stabilities for infinite-dimensional LNDS. We give applications of the
general results for different class of linear nonautonomous differential equa-
tions (ordinary differential equations, retarded and neutral functional differ-
ential equations and some classes of partial differential equations) and linear
difference inclusions.
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1 Introduction

In 1962 W. Hahn [17] posed the problem of whether asymptotic stability implies
uniform stability for the linear equation

x0 = A(t)x (x ∈ Rn) (1)
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with almost periodic coefficients. C. C. Conley and R. K. Miller [12] gave a negative
answer to this by constructing a scalar equation x0 = a(t)x with the property that
every solution ϕ(t, x, a) → 0 as t → +∞, but the null solution is not uniformly
stable (see also [6]). From the results of R. J. Sacker and G. R. Sell [25] and I.
U. Bronstein [2, p.141] it follows that for the linear system (1) with recurrent (in
particular, almost periodic) matrix from the asymptotic stability of the null solution
of system (1) and all systems

x0 = B(t)x, (2)

where B ∈ H(A) := {Aτ : τ ∈ R}, Aτ is the shift of the matrix A by τ , and by
bar the closure in the topology of uniform convergence on every compact from
R is denoted, there follows the uniform stability of the null solution of system (1).
Finally we note that from the results of D. N. Cheban [3] there follows the validity of
the above mentioned result for an arbitrary system (1) with a compact matrix (i.e.,
when H(A) is compact). Below we study the relationship between the asymptotic
stability and uniform stability of the null solution of system (1) in an arbitrary
Banach space.

Our main result is that for the linear system (1) with compact coefficients in an
arbitrary Banach space the following statement takes place: if the cocycle ϕ gen-
erated by equation (1) is asymptotically compact and the null solution of equation
(1) and all the equations (2) are asymptotically stable, then the null solution of
equation (1) is uniformly stable (Theorem 2.20).

This paper is organized as follows.
In Section 2 we study the general (abstract) linear nonautonomous dynamical

systems having the property of asymptotic stability. The main results in this sec-
tion are Theorems 2.20 and 2.23 which establish the relation between asymptotic
stability, uniform asymptotic stability and uniform exponential stability for asymp-
totically compact linear non-autonomous dynamical systems (linear cocycles).

Section 3 is devoted to the applications of the general results from Section
2 for linear nonautonomous differential equations (ordinary differential equations,
retarded and neutral functional differential equations).

In Section 4 we study the linear difference inclusions. The aim of this section is
the study of the problem of the absolute asymptotic stability of the discrete linear
inclusion (see, for example, Gurvits [14] and the references therein)

xt+1 ∈ F (xt),

where F (x) = {A1x,A2x, . . . , Amx} for all x ∈ E (E is a Banach space) and Ai

(1 ≤ i ≤ m) is a linear bounded operator acting in E. We establish the relation
between absolute asymptotic stability (AAS), asymptotic stability (AS), uniform
asymptotic stability (UAS) and uniform exponential stability (UES). It is proved
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that for asymptotically compact discrete linear inclusions these notions of stabil-
ity are equivalent. We study this problem in the framework of nonautonomous
dynamical systems (cocyles)

2 Nonautonomous dynamical systems and their
compact global attractors

Assume thatX and Y are complete metric spaces, R (Z) is the group of real numbers
(integers), S = R or Z, S+ = {s ∈ S | s ≥ 0}, S− = {s ∈ S | s ≤ 0}, and T is a
semigroup of the group S (for example, T = S+ or S).

Let (X, ρ) be a complete metric space and (X,T, π) be a dynamical system in
X.

Definition 2.1 The system (X,T, π) is called:

− point dissipative if there exist a compact K ⊆ X such that for every x ∈ X

lim
t→+∞ ρ(xt,K) = 0; (3)

− compact dissipative if the equality (3) takes place uniformly w.r.t. x on the
compacts from X;

− locally dissipative if for any point p ∈ X there exist δp > 0 such that the
equality (3) takes place uniformly w.r.t. x ∈ B(p, δp).

Let T1 ⊆ T2 be two sub-semigroups of the group S and (X,T1, π) ((Y,T2, σ))
be a dynamical system on X(Y ).

Definition 2.2 A triple h(X,T1, π), (Y,T2, σ), hi, where h is a homomorphism of
(X,T1, π) onto (Y,T2, σ), is called [4] a nonautonomous dynamical system.

Definition 2.3 A nonautonomous dynamical system h(X,T1, π), (Y,T2, σ), hi is
said [2, 25] to be linear if the map πt : Xy → Xyt is linear for every t ∈ T1 and
y ∈ Y, where Xy := h−1(y) = {x ∈ X : h(x) = y}, yt := σ(t, y) and πt := π(t, ·).

Let (X,h, Y ) be a locally trivial Banach fiber bundle [1, 19] and Θ be its trivial
section, i.e., Θ := {θy : y ∈ Y } (where θy is a null element of the linear space Xy).

Definition 2.4 The fiber bundle (X,h, Y ) is said to be normed if there exists a
continuous mapping | · | : X → R+ such that | · |y := | · |Xy is a norm on Xy and
|x|y = ρ(x, θy) for all x ∈ Xy and y ∈ Y .
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Theorem 2.5 [9, 10] Let Y be compact, then the following assertions are equiva-
lent:

(i) the dynamical system h(X,T1, π), (Y,T2, σ), hi is pointwise dissipative;
(ii) Xs = X, where Xs := {x ∈ X : lim

t→+∞ kxtk = 0}, where kxk := ρ(x, θh(x)).

Theorem 2.6 [9, 10] Let Y be compact, then the following statements are equiva-
lent:

(i) the dynamical system h(X,T1, π), (Y,T2, σ), hi is compactly dissipative;
(ii) Xs = X and the trivial section Θ of the fiber bundle (X,h, Y ) is uniformly

stable, that is, for all ε > 0 there is δ(ε) > 0 such that kxk < δ implies
kxtk < ε for all t ≥ 0;

(iii) if the fiber bundle (X,h, Y ) is normed, then there is a positive number N such
that

|xt| ≤ N|x|
for all x ∈ X, t ≥ 0 and Xs = X .

Theorem 2.7 [9, 10] Let Y be compact, then the following statements are equiva-
lent:

(i) the dynamical system h(X,T1, π), (Y,T2, σ), hi is locally dissipative;
(ii) Xs = X and the trivial section Θ of the fiber bundle (X,h, Y ) is uniformly

attracting, i.e., there is γ > 0 such that

lim
t→+∞ sup

kxk≤γ
kπ(t, x)k = 0;

(iii) if the fiber bundle (X,h, Y ) is normed, then the linear nonautonomous dynam-
ical system h(X,T1, π), (Y,T2, σ), hi is uniformly exponentially stable, i.e.,
there are positive numbers N and ν such that

|π(t, x)| ≤ N e−νt|x| (4)

for all x ∈ X, t ≥ 0.

Let W,Y be two complete metric spaces and (Y,T, σ) be a dynamical system
on Y .
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Definition 2.8 Recall [28] that a triplet hW,ϕ, (Y,T2, σ)i (or briefly ϕ) is called a
cocycle over (Y,T2, σ) with the fiber W , if ϕ is a mapping from T1 ×W ×Ω to W
satisfying the following conditions:

1. ϕ(0, x, y) = x for all (x, y) ∈W × Y ;

2. ϕ(t+ τ, x, y) = ϕ(t, ϕ(τ, x, y), σ(τ, y)) for all t, τ ∈ T1 and (x, y) ∈W × Y ;

3. the mapping ϕ is continuous.

If W is a real or complex Banach space and

4. ϕ(t, λx1+µx2, y) = λϕ(t, x1, ω)+µϕ(t, x2, ω) for all λ, µ ∈ R (or C), t, τ ∈ T1,
x1, x2 ∈W and y ∈ Y ,

then the cocycle ϕ is called linear.

Let hW,ϕ, (Y,T2, σ)i be a cocycle (respectively, linear cocycle) over (Y,T2, σ)
with the fiber W (or shortly ϕ). If X := W × Y, π := (ϕ, σ), i.e., π((u, y), t) :=
(ϕ(t, x, y), σ(t, y)) for all (u, y) ∈ W × Y and t ∈ T1, then the dynamical system
(X,T2, π) is called [28] a skew product over (Y,T2, σ) with the fiberW and the triplet
h(X,T1, π), (Y,T2, σ), hi is a nonautonomous (respectively, linear nonautonomous)
dynamical system generated by the cocycle ϕ, where h := pr2 : X → Y.

Definition 2.9 The mapping λ : B(X)→ R+, satisfying the following conditions:

(i) λ(A) = 0 if and only if A ∈ B(X) is relatively compact;

(ii) λ(A ∪B) = max(λ(A), λ(B)) for every A, B ∈ B(X).

is called [15, 16, 26] a measure of non-compactness on X.

Definition 2.10 The measure of non-compactness of Kuratowski α : B(X)→ R+
is defined by the equality α(A) := inf{ε > 0 | A admits a finite ε-covering }.
Definition 2.11 The dynamical system (X,T, π) is said to be asymptotically com-
pact [16, 21] if for any bounded subset M ⊆ X with a bounded semi-trajectory
Σ+M :=

S{πtM : t ≥ 0} there exists a compact subset K ⊆ X such that
lim

t→+∞β(πtM,K) = 0.

Definition 2.12 Recall that a dynamical system (X,T1, π) is said to be condi-
tionally β-condensing [16] if there exists t0 > 0 such that β(πt0B) < β(B) for all
bounded sets B in X with β(B) > 0. The dynamical system (X,T1, π) is said to
be β-condensing if it is conditionally β-condensing and the set πt0B is bounded for
all bounded sets B ⊆ X.



210 D. Cheban and C. Mammana

According to Lemma 2.3.5 in [16, p.15] and Lemma 3.3 in [5] the conditional
condensing dynamical system (X,T1, π) is asymptotically compact.

Let W be a metric space, X :=W × Y , A ⊂ X, and Ay := {x ∈ A : pr2x = y}.
Then A = ∪{Ay : y ∈ Y }. Let Ãy := pr1Ay and Ã = ∪{Ãy : y ∈ Y }. Note that if
the space Y is compact, then a set A ⊂ X is bounded in X if and only if the set Ã
is bounded in W .

Lemma 2.13 [8, 10] The equality α(A) = α(Ã) takes place for all bounded sets A ⊂
X, where α(A) (respectively α(Ã)) is the Kuratowski measure of non-compactness
for the sets A ⊂ X (respectively Ã ⊂W ).

Definition 2.14 A cocycle hW,ϕ, (Y,T2, σ)i is called conditionally α-condensing
if there exists t0 > 0 such that for any bounded set B ⊆ W the inequality
α(ϕ(t0, B, Y )) < α(B) holds if α(B) > 0. The cocycle ϕ is called α-condensing if it
is a conditionally α-condensing cocycle and the set ϕ(t0, B, Y ) = ∪{ϕ(t0, u, Y )|u ∈
B, y ∈ Y } is bounded for all bounded set B ⊆W .

Definition 2.15 A cocycle ϕ is called conditional α-contraction of order k ∈ [0, 1)
if there exists t0 > 0 such that for any bounded set B ⊆W for which ϕ(t0, B, Y ) =
∪{ϕ(t0, u, Y )|u ∈ B, y ∈ Y } is bounded the inequality α(ϕ(t0, B, Y )) ≤ kα(B)
holds. The cocycle ϕ is called α-contraction if it is a conditional α-contraction
cocycle and the set ϕ(t0, B, Y ) = ∪{ϕ(t0, u, Y )|u ∈ B, y ∈ Y } is bounded for all
bounded sets B ⊆W .

Lemma 2.16 [8, 10] Let Y be compact and the cocycle ϕ be α-condensing. Then
the skew-product dynamical system (X,T1, π), generated by the cocycle ϕ, is α-
condensing too.

Theorem 2.17 [8, 10] Let E be a Banach space, ϕ be a cocycle on (Y,T2, σ) with
fiber E and the following conditions be fulfilled:

(i) ϕ(t, u, y) = ψ(t, u, y) + γ(t, u, y) for all t ∈ T1, u ∈ E and y ∈ Y.

(ii) There exists a function m : R2+ → R+ satisfying the condition m(t, r)→ 0 as
t→ +∞ (for every r > 0) such that |ψ(t, u1, y)−ψ(t, u2, y)| ≤ m(t, r)|u1−u2|
for all t ∈ T1, u1, u2 ∈ B[0, r] and y ∈ Y .

(iii) γ(t, A, Y ) is compact for all bounded A ⊂ X and t > 0.

Then the cocycle ϕ is an α-contraction.

Definition 2.18 The cocycle hE,ϕ, (Y,T2, σ)i is said to be asymptotically compact
if the bounded sequence {ϕ(tn, un, yn)} is relatively compact for any {tn} → +∞
(tn ∈ T), bounded sequence {un} ⊂ E and {yn} ⊂ Y.
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Remark 2.19 If the space Y is compact, then the cocycle hE,ϕ, (Y,T2, σ)i is as-
ymptotically compact if and only if the skew-product dynamical system (X,T1, π)
(X := E × Y, π := (ϕ, σ) and h := pr2 : X → Y ), generated by the cocycle ϕ is
such.

Theorem 2.20 Let hE,ϕ, (Y,T, σ)i be a linear cocycle. Suppose that the following
conditions are fulfilled:

(i) Y is a compact metric space;

(ii) the cocycle ϕ is asymptotically stable, i.e., lim
t→+∞ |ϕ(t, u, y)| = 0 for all (u, y) ∈

E × Y.

Then the cocycle ϕ is uniformly stable, i.e., there exists a positive constant M
such that |ϕ(t, u, y)| ≤M |u| for t ∈ T+1 := {t ∈ T1 : t ≥ 0} and (u, y) ∈ E × Y.

Proof. Consider the family of linear bounded operators {U(t, y) : t ∈ T+1 , y ∈
Y } acting on the space E, where U(t, y) := ϕ(t, ·, y). By the principle of uniform
boundedness it is sufficient to show that for each u ∈ E there exists a constant
Mu > 0 such that

|U(t, y)u| ≤Mu (5)

for all t ∈ T+ and y ∈ Y. If we suppose that it is not true, then there are u0 ∈ E
(|u0| = 1), tn ∈ T+ and yn ∈ Y such that

|U(tn, yn)u0| ≥ n and |U(t, yn)u0| < n (0 ≤ t ≤ tn). (6)

Since the space Y is compact, we may suppose that the sequence {tn} → +∞.
Denote by

αn := sup{t : |U(t, yn)u0| ≤ 1}.
It is clear that αn ≤ tn and

|U(t, yn)u0| ≥ 1
for all t ∈ (αn, tn].

Logically there are two possibilities:
1. The sequence {αn} is bounded and, consequently, we may suppose that it is

convergent. Let α := lim
n→+∞αn, then we have

|U(t+ αn, yn)u0| = |U(t, ynαn)U(αn, yn)u0| ≥ 1 (7)

for all t ∈ (0, tn−αn]. Since the space Y is compact, then we may suppose that {yn}
and {ynαn} are convergent. Let y0 := lim

n→+∞ yn and ȳ0 := lim
n→+∞ ynαn. Passing to

the limit in (7) as n→ +∞, we obtain
|U(t, ȳ0)ū0| ≥ 1 (8)
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for all t ∈ (0,+∞), where ū0 := lim
n→+∞U(αn, yn)u0 = U(α, y0)u0. But the condition

(8) contradicts the asymptotic stability of the cocycle ϕ.
2. The sequence {αn} is unbounded and, consequently, we may suppose that

{αn}→ +∞. We will show that in this case the sequence {tn − αn} is unbounded
too and we may suppose that {tn − αn} → +∞. In fact, if it is not true, then we
may consider that this sequence is convergent. Let 0 ≤ β := lim

n→+∞ tn − αn. We

observe that
|U(tn, yn)u0| = |U(tn − αn, ynαn)U(αn, yn)u0|. (9)

Since the sequence {U(αn, yn)u0} is bounded and the cocycle ϕ is asymptotically
compact, then we may suppose that the sequence {U(αn, yn)u0} is convergent. By
the compactness of Y we may consider that the sequence {ynαn} is convergent
too. Let ū0 := lim

n→+∞U(αn, yn)u0 and ȳ0 := lim
n→+∞ ynαn. From the equality (9)

it follows that the sequence {U(tn, yn)u0} is convergent and lim
n→+∞ |U(tn, yn)u0| =

|U(β, ȳ0)ū0|. In particular, the sequence {|U(tn, yn)u0|} is bounded, i.e.,
sup{|U(tn, yn)u0| : n ∈ N} < +∞. (10)

But relations (6) and (10) contradict each other.
The contradiction obtained proves the relation (5). ¤

Remark 2.21 1. If T = S and Y is a compact and minimal set, then Theorem
2.20 holds without the assumption of asymptotical compactness of the cocycle ϕ
(see [8]).

2. If the Banach space E is reflexive, then using the results [30] it is possible to
show that Theorem 2.20 is still true without the asymptotical compactness of the
cocycle ϕ.

Theorem 2.22 [8, 9, 10] Let (X,T, π) be an asymptotically compact dynamical
system. Then the following statements are equivalent:

(i) the dynamical system (X,T, π) is compactly dissipative;

(ii) the dynamical system (X,T, π) is locally dissipative.

Theorem 2.23 Let hE,ϕ, (Y,T2, σ), hi be a linear asymptotically compact cocycle
and Y be compact. Then the following assertions are equivalent:

(i) the cocycle ϕ is asymptotically stable (convergent), i.e.,

lim
t→+∞ |ϕ(t, u, y)| = 0

for all (u, y) ∈ E × Y ;
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(ii) the cocycle ϕ is uniformly exponentially stable, i.e., there are two positive
constants N and ν such that

|ϕ(t, u, y)| ≤ N e−νt|u|
for all t ≥ 0 and (u, y) ∈ E × Y.

Proof. Let X := E × Y, (X,T1, π) (respectively h(X,T1, π), (Y,T2, σ), hi) be the
skew-product (respectively, linear nonautonomous) dynamical system, generated by
the linear cocycle ϕ. Under the conditions of the Theorem the skew-product dynam-
ical system (X,T1, π) is asymptotically compact and pointwise dissipative. By The-
orem 2.20 the linear nonautonomous dynamical system h(X,T1, π), (Y,T2, σ), hi) is
uniformly stable and, consequently, according to Theorem 2.6 it is compactly dis-
sipative. According to Theorem 2.22 the dynamical system (X,T, π) is locally
dissipative. Now to finish the proof of Theorem it is sufficient to refer to Theorem
2.7. ¤

3 Linear nonautonomous differential equations

3.1 Linear ordinary differential equations.

Let Λ = [E] be a set of all linear bounded operators acting in the Banach space E
and consider the linear differential equation

u0 = A(t)u, (11)

where A ∈ C(R,Λ). Along with equation (11), we shall also consider its H-class,
that is, the family of equations

v0 = B(t)v, (12)

where B ∈ H(A) := {Aτ : τ ∈ R}, Aτ (t) = A(t + τ) (t ∈ R), and the bar denotes
closure in C(R,Λ). Let ϕ(t, u,B) be the solution of equation (12) that satisfies
the condition ϕ(0, u,B) = u. Let (C(R,Λ),R, σ) be a shifts dynamical system on
C(R,Λ) (see, for example, [28, 29]). We put Y := H(A) and denote the dynamical
system of shifts on H(A) by (Y,R, σ). Then the triple h(X,R+, π), (Y,R, σ), hi is
a linear nonautonomous dynamical system, where X := E × Y , π := (ϕ, σ); i.e.,
π((v,B), τ) := (ϕ(τ, v,B), Bτ ) and h := pr2 : X → Y ).

Theorem 3.1 Let A ∈ C(R,Λ) be compact (i.e., H(A) is a compact subset of
(C(R,Λ),R, σ) ), the nonautonomous system h(X,R+, π), (Y,R, σ), hi generated by
equation (11) is asymptotically compact. Then the following conditions are equiva-
lent:
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1. The trivial solution of equation (11) is uniformly exponentially stable, i.e.,
there exist positive numbers N and ν such that kU(t, A)U(τ,A)−1k ≤ Ne−(t−τ)

for all t ≥ τ.

2. lim
t→+∞ |ϕ(t, u,B)| = 0 for every u ∈ E and B ∈ H(A).

Proof. Applying Theorem 2.23 to the nonautonomous system h(X,R+, π), (Y,R, σ), hi
generated by equation (11), we obtain the equivalence of conditions 1. and 2. The
theorem is proved. ¤

We now formulate some sufficient conditions for the α-condensingness (in par-
ticular, asymptotic compactness) of the linear non-autonomous dynamical system
generated by equation (11).

Theorem 3.2 [8, 10] Let A ∈ C(R, [E]), A(t) = A1(t) + A2(t) for all t ∈ R, and
assume that H(Ai) (i = 1, 2) are compact and the following conditions hold:

(i) The null solution of the equation

u0 = A1(t)u (13)

is uniformly exponentially stable, that is, there are positive numbers N and ν
such that

kU(t, A1)U−1(τ,A1)k ≤ N e−ν(t−τ) (14)

for all t ≥ τ (t, τ ∈ R), where U(t, A1) is the Cauchy operator of equation
(13).

(ii) The family of operators {A2(t) : t > 0} is uniformly completely continuous,
that is, for any bounded set A ⊂ E the set {A2(t)A : t > 0} is relatively
compact.

Then the linear nonautonomous dynamical system generated by equation (11) is
an α-contraction.

Theorem 3.3 [8, 10] Let H(A) be compact and assume that there is a finite-
dimensional projection P ∈ [E] such that
(i) the family of projections {P (t) : t ∈ R}, where P (t) := U(t, A)PU−1(t,A), is

relatively compact in [E], and

(ii) there are positive numbers N and ν such that

kU(t, A)QU−1(τ,A)k ≤ N e−ν(t−τ)

for all t ≥ τ, where Q := I − P .

Then the linear nonautonomous dynamical system generated by equation (11) is
an α-contraction.
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3.2 Linear functional differential equations

Let r > 0, C([a, b],Rn) be the Banach space of all continuous functions ϕ : [a, b]→
Rn with the sup norm. For [a, b] := [−r, 0] we put C := C([−r, 0],Rn). Let c ∈
R, a ≥ 0, and u ∈ C([c − r, c + a],Rn). We define ut ∈ C for any t ∈ [c, c + a]
by the relation ut(θ) := u(t + θ),−r ≥ θ ≥ 0. Let A = A(C,Rn) be the Banach
space of all linear operators that act from C → Rn equipped with the operator
norm, let C(R,A) be the space of all operator-valued functions A : R→ A with the
compact-open topology, and let (C(R,A),R, σ) be the dynamical system of shifts
on C(R,A). Let H(A) := {Aτ | τ ∈ R}, where Aτ is the shift of the operator-valued
function A by τ and the bar denotes closure in C(R,A).

Consider the equation
u0 = A(t)ut, (15)

where A ∈ C(R,A). We put H(A) := {Aτ : τ ∈ R}, Aτ (t) = A(t + τ), where the
bar denotes closure in the topology of uniform convergence on every compact of R.

Along with equation (15) we also consider the family of equations

u0 = B(t)ut, (16)

where B ∈ H(A). Let ϕt(v,B) be a solution of equation (16) with the condition
ϕ0(v,B) = v defined on R+. We put Y := H(A) and denote by (Y,R, σ) the dy-
namical system of shifts on H(A). Let X := C × Y and π := (ϕ, σ) the dynamical
system on X defined by the equality π(τ, (v,B)) := (ϕτ (v,B), Bτ ). The nonau-
tonomous dynamical system h(X,R+, π), (Y,R, σ), hi (h := pr2 : X → Y ) is linear.
The following assertion is valid.

Lemma 3.4 [8, 10] Let H(A) be compact in C(R,A). Then the linear nonau-
tonomous dynamical system h(X,R+, π), (Y,R, σ), hi generated by equation (15) is
completely continuous (in particularly, asymptotically compact), that is, for any
bounded set A ⊆ X there is an l = l(A) > 0 such that πlA is relatively compact.

Theorem 3.5 Let H(A) be compact. Then the following assertions are equivalent:

(i) For any B ∈ H(A) the zero solution of equation (16) is asymptotically stable,
i.e., lim

t→+∞ |ϕt(v,B)| = 0 for all v ∈ C and B ∈ H(A).

(ii) The null solution of equation (15) is uniformly exponentially stable, i.e., there
are positive numbers N and ν such that |ϕt(v,B)| ≤ N e−νt|v| for all t ≥
0, v ∈ C and B ∈ H(A).
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Proof. Let h(X,R+, π), (Y,R, σ), hi be the linear nonautonomous dynamical system
generated by equation (15). According to Lemma 3.4 this system is completely
continuous and to finish the proof it is sufficient to refer to Theorem 2.23. ¤

Consider the neutral functional differential equation

d

dt
Dxt = A(t)xt, (17)

where A ∈ C(R,A) and D ∈ A is an operator non-atomic at the zero [15, p.67].
As well as in the case of equation (15), the equation (17) generates a linear non-
autonomous dynamical system h(X,R+, π), (Y,R, σ), hi, where X = C × Y , Y =
H(A) and π = (ϕ, σ). The following statement takes place.

Lemma 3.6 [8, 10] Let H(A) be compact and the operator D is stable; i.e., the null
solution of the homogeneous difference equation Dyt = 0 is uniformly asymptotically
stable. Then the linear nonautonomous dynamical system h(X,R+, π), (Y,R, σ), hi,
generated by equation (17), is conditionally α-condensing.

Theorem 3.7 Let A ∈ C(R,A) be compact (i.e., H(A) is a compact set of the shifts
dynamical system (C(R,A),R, σ) ) and D is stable, then the following assertions
are equivalent:

(i) The null solution of equation (15) and all equations

d

dt
Dxt = B(t)xt, (18)

where B ∈ H(A), is asymptotically stable, i.e., lim
t→+∞ |ϕt(v,B)| = 0 for all

v ∈ C and B ∈ H(A) (ϕt(v,B) is the solution of equation (18) with condition
ϕ0(v,B) = v);

(ii) The null solution of equation (17) is uniformly exponentially stable, i.e., there
are positive numbers N and ν such that |ϕt(v,B)| ≤ Ne−νt|v| for all t ≥
0, v ∈ C and B ∈ H(A).

Proof. Let h(X,R+, π), (Y,R, σ), hi be the linear nonautonomous dynamical system
generated by equation (17). According to Lemma 3.6 this system is conditionally α
condensing. To finish the proof of Theorem 3.7 it is sufficient to refer to Theorem
2.23. ¤
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3.3 Linear partial differential equations

Let Λ be some complete metric space of linear closed operators acting in a Banach
space E ( for example Λ = {A0+C|C ∈ [E]}, where A0 is a closed operator that
acts in E). We assume that the following conditions are fulfilled for equation (11)
and its H-class (12):

a. for any v ∈ E and B ∈ H(A) equation (12) has exactly one mild solution
ϕ(t, v, B) (i.e., ϕ(·, v,B) is continuous, defined on R+ and satisfies the equa-
tion

ϕ(t, v,B) = U(t, B)v +

Z t

0
U(t− τ,B)ϕ(τ, v,B) dτ (19)

and the condition ϕ(0, v, B) = v);

b. the mapping ϕ : (t, v, B) → ϕ(t, v, B) is continuous in the topology of R+ ×
E ×C(R;Λ).

Under the above assumptions the equation (11) generates a linear nonautonomous
dynamical system h(X,R+, π), (Y,R, σ), hi, where X := E × Y, π = (ϕ, σ) and
h := pr2 : X → Y. Applying the results from Section 2 to this system, we will
obtain the analogous assertions for different classes of partial differential equations.

We will consider examples of partial differential equations which satisfy the
above conditions a.-b.

Example 3.8 Consider the differential equation

u0 = (A1 +A2(t))u, (20)

where A1 is a sectorial operator that does not depend on t ∈ R, and A2 ∈ C(R, [E]).
The results of [18, 22] imply that equation (20) satisfies conditions a.-b.

Example 3.9 LetH be a Hilbert space with a scalar product h·, ·i = |·|2, D(R+,H)
be the set of all infinitely differentiable, bounded functions on R+ with values in H.

Denote by (C(R, [H]),R, σ) a dynamical system of shifts on C(R, [H]). Consider
the equation Z

R+

[hu(t), ϕ0(t)i+ hA(t)u(t), ϕ(t)i] dt = 0, (21)

along with equation (21) we consider also the family of equationsZ
R+

[hu(t), ϕ0(t)i+ hB(t)u(t), ϕ(t)i] dt = 0, (22)
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where B ∈ H(A) := {Aτ |τ ∈ R}, Aτ (t) := (t + τ) and the bar denotes closure in
C(R, [H]).

The function u ∈ C(R+,H) is called a solution of equation (21) if (21) takes
place for all ϕ ∈ D(R+,H).

Let (H(A),R, σ) be a dynamical system of shifts on H(A), ϕ(t, v, B) be a so-
lution of (22) with condition ϕ(0, v, B) = v, X̃ := H × H(A), X be a set of all
the points hu,Bi ∈ X̃ such that through the point u ∈ H there passes a solution
ϕ(t, u,A) of equation (21) defined on R+. According to Lemma 2.21 in [7] the set
X is closed in X̃. By virtue of Lemma 2.22 in [7] the triple (X,R+, π) is a dy-
namical system on X (where π := (ϕ, σ) ) and h(X,R+, π), (Y,R, σ), hi is a linear
non-autonomous dynamical system, where h := pr2 : X → Y := H(A).

Theorem 3.10 Let A ∈ C(R,Λ) be compact (i.e., the set H(A) is compact in
C(R,Λ)) and the cocycle ϕ generated by equation (11) be asymptotically compact,
then the following assertion are equivalent:

(i) The trivial solution of equation (11) is uniformly exponentially stable, i.e.,
there exist positive numbers N and ν such that kU(t,B)k ≤ Ne−νt for all
t ≥ 0 and B ∈ H(A).

(ii) lim
t→+∞ |ϕ(t, u,B)| = 0 for all (u,B) ∈ E ×H(A).

Proof. This statement follows directly from Theorem 2.23. ¤

4 Discrete linear inclusions

4.1 Discrete linear inclusions and cocycles

Consider a compact set of operatorsM ⊆ [E].

Definition 4.1 A discrete linear inclusion DLI(M) is called (see, for example,
[14]) the set of all sequences {{xj} | j ≥ 0} of vectors in E such that

xj = Aijxj−1 (23)

for some Aij ∈M (trajectory of DLI(M)), i.e.,

xj = AijAij−1 . . . Ai1x0, all Aik ∈M. (24)

Definition 4.2 A bilateral sequence {{xj} | j ∈ Z} of vectors in E is called a full
trajectory of DLI(M) (entire trajectory or trajectory on Z), if xn+j = Aijxn+j−1
for all n ∈ Z.



Relation between different types of stabilities . . . 219

We may consider that it is a discrete control problem, where at each moment
of time j we may apply a control from the set M, and DLI(M) is the set of
possible trajectories of the system. The basic issue for any control system concerns
its stability. One of the most important types of stability is the so called absolute
asymptotic stability (AAS).

Definition 4.3 DLI(M) is called absolutely asymptotically stable (AAS) (or con-
vergent), if for any trajectory {xj} of its we have

lim
j→∞

xj = 0.

Equivalently, all operator products

lim
j→∞

AijAij−1 . . . Ai1x = 0 (all Aij ∈M)

for every x ∈ E.

Definition 4.4 A setM ⊆ [E] of operators is called product bounded if there exists
M > 0 such that kAinAin−1 . . . Ai1k ≤ M for all finite sequences {i1, i2, . . . , in}
(n ∈ N).

Definition 4.5 DLI(M) is said to be asymptotically stable (AS) if it is product
bounded (or uniformly stable) and is convergent.

Definition 4.6 DLI(M) is said to be uniformly asymptotically stable (or uni-
formly convergent) (UAS) if

lim
n→+∞ kAinAin−1 . . . Ai1k = 0

uniformly with respect to the sequences {Ain} (Ain ∈M for all n ∈ N).

Definition 4.7 DLI(M) is said to be uniformly exponentially stable (UES) if there
are two positive constants N and α ∈ (0, 1) such that

kAinAin−1 . . . Ai1xk ≤ Nαn|x|

for all x ∈ E, n ∈ N and any sequence {Ain} (Ain ∈M for all n ∈ N).

Let (X, ρ) be a complete metric space with the metric ρ. Denote by K(X) the
family of all compact subsets of X. Consider the set-valued function F : E → K(E)
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defined by the equality F (x) := {Ax |A ∈M}. Then the discrete linear inclusion
DLI(M) is equivalent to the difference inclusion

xj ∈ F (xj−1). (25)

Below we will give a new approach concerning the study of discrete linear inclu-
sions DLI(M) (or difference inclusion (25)). Denote by C(Z+,X) the space of all
continuous mappings f : Z+ → X equipped with the compact-open topology. This
topology can be metrized. For instance, by the equality

d(f1, f2) :=
∞X
n=1

1

2n
dn(f

1, f2)

1 + dn(f1, f2)

(dn(f
1, f2) := max{|f1(k)− f2(k)| | 0 ≤ k ≤ n})

a complete metric on C(Z+,X) is defined, which generates a compact-open topol-
ogy. Denote by (C(Z+,X),Z+, σ) a dynamical system of translations (shifts dynam-
ical system or dynamical system of Bebutov [28, 29]) on C(Z+,X), i.e., σ(k, f) := fk
and fk is a k ∈ Z+ shift of f (i.e., fk(n) := f(n+ k) for all n ∈ Z+).

We may now rewrite equation (23) in the following way:

xj+1 = ω(j)xj(ω ∈ Ω), (26)

where ω ∈ Ω is the operator-function defined by the equality ω(j) := Aij+1 for all
j ∈ Z+. Denote by ϕ(n, x0, ω) a solution of equation (26) issuing from the point
x0 ∈ E at the initial moment n = 0. Note that DLI(M) (or inclusion (25)) is
equivalent to the family of linear nonautonomous equations (26) (ω ∈ Ω).

From the general properties of linear difference equations it follows that the
mapping ϕ : Z+ ×E ×Ω→ E satisfies the following conditions:

(i) ϕ(0, x0, ω) = x0 for all (x0, ω) ∈ E ×Ω;
(ii) ϕ(n+τ, x0, ω) = ϕ(n, ϕ(τ, x0, ω), σ(τ, ω)) for all n, τ ∈ Z+ and (x0, ω) ∈ E×Ω;
(iii) the mapping ϕ is continuous;

(iv) ϕ(n, λx1+µx2, ω) = λϕ(n, x1, ω)+µϕ(n, x2, ω) for all λ, µ ∈ R (or C), x1, x2 ∈
E and ω ∈ Ω.

From what was presented above it follows that every DLI(M) (respectively,
inclusion (25)) in a natural way generates a linear cocycle hE,ϕ, (Ω,Z+, σ)i, where
Ω = C(Z+,M), (Ω,Z+, σ) is a dynamical system of shifts on Ω and ϕ(n, x, ω) is a
solution of equation (26) issuing from the point x ∈ E at the initial moment n = 0.
Notice that by the theorem of Tychonoff [20] the space Ω is compact in C(Z+, [E]).
Thus, we can study the inclusion (25) (respectively, DLI(M)) in the framework of
the theory of linear cocycles with discrete time.
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4.2 Absolute asymptotic stability of discrete linear inclusions in
Banach spaces

In this section we will study DLI(M) in an arbitrary Banach space. Let E be a
real or complex Banach space with the norm | · | and [E] be a Banach space of all
linear bounded operators acting on the space E and equipped with the operator
norm. Below we suppose thatM := {A1, A2, . . . , Am} and Ai ∈ [E].

Note that for infinite-dimensional discrete linear inclusions DLI(M) (dim(E) <
+∞) the notion of absolute asymptotic stability (AAS) and the equality

lim
n→+∞ kAinAin−1 . . . Ai1k = 0 (27)

are equivalent. It is well known (see, for example, [11]) that for infinite-dimensional
DLI(M) (dim(E) = +∞) it is not true. This fact is confirmed by the following
example.

Example 4.8 Let E := c0, A ∈ [c0] be the operator defined by the equality
Aξ := {ξk+1}

for all ξ := {ξk} ∈ c0. It is easy to check that the operator A has the following
properties:

(i)
Anξ → 0 (28)

as n→∞ for each ξ ∈ c0, where An := A ◦An−1 (n ≥ 1) and A0 := IdE;

(ii)
Anen+1 = e1, (29)

where e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . . (n = 1, 2, . . .).

Let M := {A}, i.e., m = 1. In this case DLI(M) is equivalent to the linear
autonomous difference equation

xn+1 = Axn.

From (28) it follows that DLI(M) (with M = {A}) is absolutely asymptotically
stable. On the other hand, from equality (29) we have that kAnk ≥ 1 and, conse-
quently, equality (27) does not hold.

LetM ⊆ [E] be a nonempty bounded set of operators and denote by S = S(M)
the semi-group generated byM and augmented with the identity operator I := IdE,
so that S = S∞n=0Mn, whereMn := {Qn

i=1Ai | Ai ∈M, 1 ≤ i ≤ n}.
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Definition 4.9 The number

ρ(M) := lim sup
n→∞

kMnk1/n, where kMk := sup{kAk : A ∈M}

is called [13, 14, 24] a joint spectral radius of a bounded subset of linear operators
M.

Definition 4.10 The subset M ⊆ [E] of linear bounded operators is said to be
generally contracting if there are positive numbers N and α < 1 such that

kAinAin−1 . . . Ai1k ≤ Nαn (30)

for all Ai1 , Ai2 , . . . , Ain ∈M and n ∈ N.
Example 4.11 Let E := C[0, 1] and A ∈ [E] be defined by the equality

(Aϕ)(t) :=
3

2

Z t

0
ϕ(s) ds

(t ∈ [0, 1] and ϕ ∈ C[0, 1]). It is easy to see that kAnk = (32)
n 1
n! . In particular,

kAk = 3
2 , kA2k = 9

8 and kA3k = 27
32 < 1. In addition, kAnk ≤ 2(34)n for all n ∈ N.

Thus, the setM = {A} is generally contracting.
Theorem 4.12 Let M ⊂ [E] be a compact subset (in particular, the set M may
consist of a finite number of elements, i.e., M = {A1, A2, . . . , Am} with Ai ∈ [E]
(1 ≤ i ≤ m)). Then the following statements are equivalent:

a) the discrete linear inclusion DLI(M) is uniformly asymptotically stable;

b) the setM ⊆ [E] is generally contracting;
c) ρ(M) < 1.

Proof. Let Ω := C(Z+,M). Then Ω is a compact subset of C(Z+, [E]) and on Ω
there is defined a dynamical system of shifts (Ω,Z+, σ) induced by the Bebutov’s
dynamical system (C(Z+, [E]),Z+, σ). Consider the cocycle hE,ϕ, (Ω,Z+, σ)i gen-
erated by DLI(M), i.e., ϕ(n, ω, x) := AinAin−1 . . . Ai1x, where Ain ∈M and ω ∈ Ω
with ω(n) := Ain (for all n ∈ N). Applying to the cocycle ϕ Theorem 2.6, we obtain
the equivalence of the first two conditions.

Now we note that if M is a generally contracting subset of [E], then from
inequality (30) it follows that ρ(M) ≤ α < 1. Thus the condition b) implies c). Let
c) be fulfilled, then for all ε ∈ (0, 1−ρ(M)) there exists a number nε ∈ N such that

kAinAin−1 . . . Ai1k ≤ (α+ ε)n (31)

for all n ≥ nε. Since β := α + ε < 1, then from inequality (31) the condition a)
follows. The theorem is proved. ¤
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Remark 4.13 The statements close to Theorem 4.12 were established before in
[14, 30] for infinite-dimensional DLIs and in [23] for finite-dimensional DLIs.

4.3 Asymptotically compact discrete linear inclusions

Lemma 4.14 Let A0, A00 ∈ [E], A := A0 +A00 and the following conditions hold:

(i) the operator A0 is contracting, i.e., kA0k < 1;
(ii) the operator A00 is compact.

Then the operator A is an α-contraction and α(A(B)) ≤ kα(B) for all bounded
subsets B ⊆ E, where k := kA0k.

Proof. Since A(B) ⊆ A0(B)+A00(B), then according to Lemma 22.2 [27] α(A(B)) ≤
α(A0(B))+α(A00(B)) ≤ kA0kα(B)+α(A00(B)). To finish the proof of our lemma it
is sufficient to note that under the conditions of the lemma α(A00(B)) = 0. ¤

Lemma 4.15 LetM be a compact subset of [E]. Suppose that each operator A of
M may be presented as a sum A0+A00, where A0 is a contraction and A00 is a compact
operator. Then for any bounded set B ⊂ E and n ∈ N we have α(U(n,Ω)B) ≤
kα(B) for any bounded subset B ⊆ E, where U(n, ω) := ϕ(n, ·, ω) = AinAin−1 . . . Ai1

(ω(j) := Aij ∈M for all j ∈ N) and k :=
Qn

j=1 kA0ijk < 1.

Proof. Since the set Ω is compact and U(n, ω) =
Qn

k=1 ω(k) (ω ∈ Ω), then for each
n the mapping U(n, ·) : Ω → [E] is continuous. Note that Aij = A0ij + A00ij and,
consequently, we have

U(n, ω) :=
nY

j=1

Aij =
nY

j=1

(A0ij +A00ij ) =
nY

j=1

A0ij + C,

where C ∈ [E] is some compact operator. By Lemma 4.14 we have
α(U(n, ω)B) ≤ k0α(B)

for all bounded subsets B ⊆ E, where k0 = kQn
j=1A

0
ij
k ≤ Qn

j=1 kA0ijk = k < 1.
The lemma is proved. ¤

Theorem 4.16 Let M be a compact subset of [E]. Suppose that each operator A
ofM may be represented as a sum A0 +A00, where A0 is a contraction and A00 is a
compact operator. Then the following assertions are equivalent:

(i) the discrete linear inclusion DLI(M) is absolutely asymptotically stable;
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(ii) the discrete linear inclusion DLI(M) is uniformly exponentially stable.

Proof. Consider the cocycle hE,ϕ, (Ω,Z+, σ)i generated by DLI(M). By Lemma
4.15, under the conditions of the Theorem, this cocycle is an α-contraction. Now to
finish the proof it is sufficient to apply Theorem 2.23, because every α-contracting
cocycle ϕ is α-condensing and, in particular, it is asymptotically compact. ¤

Theorem 4.17 Let M be a compact subset of [E]. Suppose that the following
conditions hold:

(i) each operator A of M may be represented as a sum A0 + A00, where A0 is a
contraction and A00 is a compact operator;

(ii) the discrete linear inclusion DLI(M) does not admit nontrivial bounded tra-
jectories on Z;

(iii) the setM ⊆ [E] of operators is product bounded.
Then the discrete linear inclusion DLI(M) is uniformly exponentially stable.

Proof. Consider the cocycle hE,ϕ, (Ω,Z+, σ)i generated by DLI(M) and the cor-
responding skew-product dynamical system (X,Z+, π), where X := E × Y and
π := (ϕ, σ). By Lemma 4.15, under the conditions of the Theorem, this cocy-
cle is an α-contraction and, consequently, the dynamical system (X,Z+, π) also
is. It is easy to check that under the conditions of the theorem this nonau-
tonomous dynamical system is uniformly stable, i.e., |π(n, x)| ≤ M |x| for all
x := (u, y) ∈ X and n ∈ Z+, because |π(n, x)| = |U(n, ω)u| ≤ M |u| = M |x|,
where U(n, ω) := ϕ(n, ·, ω) = AinAin−1 . . . Ai1 (ω(j) := Aij ∈M for all j ∈ N) and
M ⊂ [E] is product bounded.

Now we will show that the nonautonomous dynamical system h(X,Z+, π), (Ω,Z+,
σ), hi is convergent. In our case this means that lim

n→+∞ |π(n, x)| = 0 for all x ∈ X.

Really, the system (X,Z+, π) is an α-contraction and, consequently, it is asymptot-
ically compact. The trajectory {π(n, x) | n ∈ Z+} is bounded and consequently it is
relatively compact. Denote by ωx an ω-limit set of the point x. This set is nonempty,
compact and invariant. In particular, ωx consists of full trajectories of DLI(M)
bounded on Z. Under the conditions of our theorem, ωx ⊆ Θ := {(0, y) | y ∈ Y }
and, hence, lim

n→+∞ |π(n, x)| = 0. Now to finish the proof it is sufficient to apply

Theorem 2.23. ¤

Theorem 4.18 LetM be a compact subset of [E] and each operator A ofM may
be represented as a sum A0 + A00, where A0 is a contraction and A00 is a compact
operator.

Then the following assertions are equivalent:
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(i) the discrete linear inclusion DLI(M) is product bounded and is absolutely
asymptotically stable;

(ii) the setM is generally contracting.

Proof. Consider the cocycle ϕ generated by DLI(M). By Lemma 4.15, under the
conditions of the Theorem, this cocycle is α-condensing. Now to finish the proof it
is enough to refer to Theorem 2.23. ¤
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