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Abstract

The paper presents the asymptotic estimates of all solutions of the vector
differential equation

ẏ(t) = A(t)y(t) +
mX
j=1

Bj(t)y(τj(t)), t ∈ I = [t0,∞)

with continuous real matrices A, Bj and unbounded lags. Assuming that the
equation

ẏ(t) = A(t)y(t)

is uniformly asymptotic stable, we derive the asymptotic bounds valid for all
solutions y of the considered delay differential system. These estimates are
formulated by means of a solution of an auxiliary scalar functional equation
and inequality.
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1 Introduction and preliminaries

In this paper, we discuss the asymptotic properties of the vector delay differential
equation

ẏ(t) = A(t)y(t) +
mX
j=1

Bj(t)y(τj(t)), t ∈ I = [t0,∞), (1.1)

where A, Bj are n × n matrices with real and continuous entries and τj are real,
continuous and increasing functions on I such that τj(t) < t and τj(t) → ∞ as
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t → ∞ (j = 1, . . . ,m). Some additional requirements on A, Bj and τj will be
imposed later. Particularly, the main result we formulate for equations (1.1) with
unbounded lags, i.e., such that t− τj(t)→∞ as t→∞ (j = 1, . . . ,m).

Various special cases of equation (1.1) with unbounded lags have been studied
because of numerous interesting applications as well as the specific qualitative pro-
perties. The special attention was paid to equations with proportional time delays,
particularly to the equation

ẏ(t) = Ay(t) +By(λt), 0 < λ < 1, t ≥ 0, (1.2)

where A, B are constant real or complex matrices. Equation (1.2) is usually referred
to as the pantograph equation because of its relevance to the study of the motion
of the pantograph head of an electric locomotive (see [12]). The theoretical study
of the pantograph equation can be found in papers [7, 9, 13] and many others.

The qualitative investigation of (1.2) has been extended also to some more
general cases. Iserles [5] studied the qualitative properties of the vector neutral
equation

ẏ(t) = Ay(t) +By(λt) + Cẏ(λt), 0 < λ < 1, t ≥ 0.
Using the idea of expansion of solutions into Dirichlet series form many results
known from the “pure” delayed case have been extended to this neutral case. This
approach turned out to be very effective especially in the study of autonomous
linear differential equations involving proportionally delayed argument (for other
related results see, e.g., [6] or [10]). However, considering these equations with
variable coefficients and/or with a general form of a delayed argument, it is often
very difficult to apply this technique (see [4, 11] or [2, 3]).

In this paper, we utilize proof methods based on some results of the transfor-
mation theory of delay differential equations and some results of the theory of func-
tional equations to describe the asymptotic properties of all solutions of (1.1). The
main results are formulated in Section 3, where we derive the asymptotic estimates
of all solutions of (1.1) in terms of a solution of some scalar functional equation and
inequality. These results generalize several earlier asymptotic estimates due to Lim
[9], Pandolfi [13], Makay and Terjéki [11] and some others. We also present several
illustrating examples.

Let t−1 := min {τj(t0), j = 1, 2 . . . ,m} and I∗ := [t−1,∞). By a solution of
(1.1) we understand a real valued function y ∈ C(I∗) ∩ C1(I) such that y satisfies
(1.1) on I. Under the above mentioned assumptions on A, Bj , τj there exists a
unique solution y of (1.1) coinciding with a given initial function on the initial
interval [t−1, t0]. We note that all of the results of this paper remain valid if we
admit τj(t0) = t0 for some (or all) j = 1, . . . ,m.
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We define the norm of a vector y = (y1, . . . , yn) as |y| = max{|yi|, i = 1, . . . , n}
and the norm of a matrix A as kAk = sup{|Ay|, y ∈ Rn, |y| = 1}.

2 Some auxiliary results

We consider the linear functional inequality

−aω(t) +
mX
j=1

bj(t)ω(τj(t)) ≤ 0, t ∈ I, (2.1)

where a > 0 is a real constant, bj , τj are continuously differentiable functions on I
such that bj(t) ≥ 0,

Pm
j=1 bj(t) > 0, τj are increasing on I, τj(t) < t for every t ∈ I

and τj(t)→∞ as t→∞ (j = 1, . . . ,m).
Set t−1 := min{τj(t0), j = 1, . . . ,m}, tk := sup{s, τj(s) < tk−1 for all j =

1, . . . ,m}, k = 1, 2, . . . and let Ik = [tk−1, tk], k = 0, 1, . . . . Then I = ∪∞k=1Ik and
τj(Ik+1) ⊂ ∪ki=0Ii for any j = 1, . . . ,m.

Now let ω0 be a positive and continuously differentiable function on I0 and let

ω0(t0) =
mX
j=1

bj(t0)

a
ω0(τj(t0)),

ω̇0(t0) =
mX
j=1

Ã
ḃj(t0)

a
ω0(τj(t0)) +

bj(t0)

a
ω̇0(τj(t0))τ̇j(t0)

!
.

If we put

ω(t) =
mX
j=1

bj(t)

a
ω0(τj(t)) for all t ∈ I1,

and inductively

ω(t) =
mX
j=1

bj(t)

a
ω(τj(t)) for all t ∈ Ik,

k = 2, 3, . . . , it is easy to verify that ω defines the positive and continuously diffe-
rentiable solution of (2.1).

Thus we have

Proposition 2.1 Consider the inequality (2.1) and let the above introduced as-
sumptions on a, bj and τj be fulfilled. Then there exists a positive and continuously
differentiable solution ω of (2.1).
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Remark 2.2 Notice that we derived the function ω fulfilling relation (2.1) in the
form of an equality.

To obtain a more applicable form of a solution of (2.1), we consider the following
additional assumptions on τj : τ̇j are positive and nonincreasing on I, τi ◦τj = τj ◦τi
on I for any pair i, j = 1, . . . ,m and let τj(t0) = t0. Then, by [1], there exists a
common solution ϕ to the system of the simultaneous functional equations

ϕ(τj(t)) = λjϕ(t), λj = τ̇j(t0) < 1, t ∈ I, (2.2)

j = 1, . . . ,m, which is positive on (t0,∞) and has a continuous, positive and
bounded derivative on I.

The verification of the following assertion is now easy.

Proposition 2.3 Consider the inequality (2.1), where a > 0 is a constant, bj are
nonnegative functions fulfilling bj(t) ≤ βj for every t ∈ I, τj are continuously
differentiable functions on I such that τj(t) < t for every t > t0, τj(t0) = t0,
τj(t)→∞ as t→∞, τ̇j are positive and nonincreasing on I (j = 1, . . . ,m) and let
τi ◦ τj = τj ◦ τi on I for any pair i, j = 1, . . . ,m. Then the function ω(t) = (ϕ(t))α,
where ϕ is a solution of (2.2) with the above described properties and α is a (unique)
real root of

mX
j=1

βjλ
α
j = a ,

defines a solution of (2.1) which is positive and continuously differentiable on (t0,∞).

We recall that the functional equation of the form

ϕ(τ(t)) = λϕ(t), λ = τ̇(t0) < 1, t ∈ I, (2.3)

is usually referred to as the Schröder equation. It is known (see, e.g., [8]) that if τ
has a continuous and positive derivative on I, τ(t) < t for every t ∈ I and τ(t)→∞
as t → ∞, then there exists a positive and unbounded solution ϕ of (2.3) with a
continuous and positive derivative on I. Moreover, this solution is unique up to a
multiplicative constant and has a bounded derivative on I provided τ(t0) = t0 and
τ̇ is nonincreasing on I.

We note that the assumptions on τ ensuring the existence of a solution of (2.3)
with given properties can be formulated in a weaker form. However, our formulation
is more suitable with the respect to its utilizing in the next section.
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3 Asymptotic estimates of solutions

In this section, we present the asymptotic estimate of all solutions of equation (1.1).
Throughout this section we assume that the equation

ẏ(t) = A(t)y(t) (3.1)

is uniformly asymptotic stable, i.e., there exist real constants a, L > 0 such that

kY (u, v)k ≤ L exp{a(v − u)} for all u ≥ v ≥ t0 , (3.2)

where Y (u, v) is the evolution matrix of (3.1).

Theorem 3.1 Consider equation (1.1), where A ∈ C(I), kBjk, τj ∈ C1(I), τj(t) <
t for every t ∈ I, τj(t) → ∞ as t → ∞ and τj are increasing on I (j = 1, . . . ,m).
Further, assume that there exists τ ∈ C1(I) such that τ(t) ≥ max{τj(t), j =
1, . . . ,m}, τ(t) < t for every t ∈ I, τ̇ is positive on I and τ̇(t0) < 1. Let ϕ be
a positive solution of (2.3) with a continuous and positive derivative on I and let
a, L be given by (3.2). If

Pm
j=1 kBj(t0)k ≥ a and

Pm
j=1 kBjk is nondecreasing on

I, then the estimate

y(t) = O
³
ω(t)(ϕ(t))logL/ logλ

−1´
as t→∞, (3.3)

where ω ∈ C1(I) is a positive solution of (2.1) with bj(t) = kBj(t)k, holds for any
solution y of (1.1).

Proof. First note that the solution ω of (2.1) can be chosen as nondecreasing on
I. Set

s = logϕ(t), z(s) =
y(t)

ω(t)

in (1.1) to obtain

z0(s) =
µ
A(h(s))h0(s)− ω0(h(s))h0(s)

ω(h(s))
I

¶
z(s)

+
mX
j=1

Bj(h(s))h
0(s)

ω(τj(h(s)))

ω(h(s))
z(ξj(s)),

(3.4)

where h(s) = ϕ−1(exp{s}), ξj(s) = logϕ(τj(h(s))) ≤ s+ log λ, “ 0 ” stands for the
derivative with the respect to s and I is the identity matrix.

If y is a solution of (1.1) defined on an interval I, then z is a solution of (3.4)
defined on [q0,∞), where q0 = logϕ(t0). Put q−1 := logϕ(t−1), where t−1 :=
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min{τj(t0), j = 1, . . . ,m} and let us define qk := q0 + k log λ−1, k = 1, 2, . . . , Jk :=
[qk−1, qk] and Mk := sup{|z(s)|, s ∈ ∪ki=0Ji}, k = 0, 1, . . . . Then [q0,∞) = ∪∞i=1Ji
and ξj(Jk+1) ⊂ ∪ki=0Ji for any j = 1, . . . ,m.

Now we consider the system

z0(s) = (A(h(s))h0(s)− ω0(h(s))h0(s)
ω(h(s))

I)z(s) (3.5)

and let H be the evolution matrix of (3.5). Then

kH(s, p)k = ω(h(p))

ω(h(s))
kY (h(s), h(p))k ≤ L

ω(h(p))

ω(h(s))
exp{−a(h(s)− h(p))} . (3.6)

Considering arbitrary s ∈ Jk+1 and integrating (3.4), we have

z(s) = H(s, qk)z(qk) +

Z s

qk

mX
j=1

H(s, u)Bj(h(u))h
0(u)

ω(τj(h(u)))

ω(h(u))
z(ξj(u)) du .

Using (3.6), we obtain the estimate

|z(s)| ≤LMk

³ω(h(qk))
ω(h(s))

exp{−a(h(s)− h(qk))}

+

Z s

qk

mX
j=1

kBj(h(u))kh0(u)ω(τj(h(u)))
ω(h(s))

exp{−a(h(s)− h(u))} du
´
,

i.e.,
|z(s)|
L
≤Mk

³ω(h(qk))
ω(h(s))

exp{−a(h(s)− h(qk))}

+

Z s

qk

ω(h(u))

ω(h(s))
exp{−a(h(s)− h(u))}ah0(u) du

´
.

Hence,
|z(s)|
L
≤Mk

³ω(h(qk))
ω(h(s))

exp{−a(h(s)− h(qk))}

+
exp{−ah(s)}

ω(h(s))

Z s

qk

ω(h(u))
d

du
[exp{ah(u)}] du

´
.

(3.7)

Integrating by parts and using the fact that ω is nondecreasing, we can estimate
the last integral asZ s

qk

ω(h(u))
d

du
[exp{ah(u)}] du ≤ ω(h(u)) exp{ah(u)}¯̄s

qk
.
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Substituting this back into (3.7), we have |z(s)| ≤ LMk for any s ∈ Jk+1, i.e.,

z(s) = O(Ls/ logλ−1) as s→∞ .

Then

y(t) = z(s)ω(t) = z(logϕ(t))ω(t) = O(ω(t)(ϕ(t))logL/ logλ
−1
) as t→∞. ¤

Example 3.2 To illustrate the previous result we consider equation (1.1) under
the assumptions of Theorem 3.1, where particularly we assume that max{τj(t),
j = 1, . . . ,m} ≤ λt for a suitable 0 < λ < 1 and every t ∈ I. Further, let
kBj(t)k = bjt

γ , bj > 0 (j = 1, . . . ,m), γ ≥ 0 are reals and let a, L be given by (3.2).
Then it is easy to check that the function

ω(t) = t
log(b/a)+

γ
2 log t

log λ−1 +γ
2 ,

where b =
Pm

j=1 bj , defines the required solution of (2.1) for all t large enough
and ϕ(t) = t is a solution of the corresponding equation (2.3). Consequently,
substituting this ω and ϕ into (3.3), we obtain the effective asymptotic formula
valid for all solutions of (1.1).

In the sequel we consider the case when either the requirement
Pm

j=1 kBjk non-
decreasing or

Pm
j=1 kBj(t0)k ≥ a is not valid. First we show that in such a case the

previous asymptotic estimate is not true.

Example 3.3 We consider the scalar equation with constant coefficients and a
constant delay of the form

ẏ(t) =
1− 2 exp{2}
2 exp{2}− 2y(t) +

1

2 exp{3}− 2 exp{1}y(t− 1) , t ∈ I . (3.8)

Then, by (3.3), we have the estimate y(t) = O(exp{βt}) as t → ∞, where β =
−1 − log(2 exp{2} − 1) < −1. However, equation (3.8) admits the solution y(t) =
exp{−t}, which contradicts the asymptotic property (3.3). Notice that the assump-
tion

Pm
j=1 kBj(t0)k ≥ a was not fulfilled in the case of (3.8).

In the next theorem we show that estimate (3.3) holds (also if
Pm

j=1 kBj(t0)k <
a) for a wide class of equations (1.1) with unbounded lags.

Theorem 3.4 Consider equation (1.1), where A, Bj ∈ C(I), τj ∈ C1(I), τj(t) < t
for every t > t0, τj(t0) = t0, τj(t)→∞ as t→∞, τ̇j are positive and nonincreasing
on I, τ̇j(t0) < 1 (j = 1, . . . ,m) and τi ◦ τj = τj ◦ τi on I for any pair i, j = 1, . . . ,m.
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Further, let ϕ be a solution of (2.2) with a continuous and positive derivative and
let a, L be given by (3.2). If kBj(t)k ≤ Qja for suitable reals Qj (j = 1, . . . ,m) and
every t ∈ I, then the estimate

y(t) = O
³
(ϕ(t))α+logL/ logλ

−1´
as t→∞,

where α is a (unique) real root of
Pm

j=1Qjλ
α
j = 1, holds for any solution y of (1.1).

Proof. It is easy to verify that the function ω(t) = (ϕ(t))α defines a solution of
the inequality (2.1), where bj(t) = kBj(t)k (see also Proposition 2.3). Indeed,

mX
j=1

bj(t)ω(τj(t)) ≤
mX
j=1

Qja(ϕ(τj(t)))
α =

mX
j=1

Qjaλ
α
j (ϕ(t))

α = aω(t) .

Similarly as in the proof of Theorem 3.1 we can put

s = logϕ(t), z(s) =
y(t)

ω(t)

in (1.1) and obtain (3.4). Following this proof, we derive using the same line of
argument inequality (3.7). To estimate the integralZ s

qk

ω(h(u))
d

du
[exp{ah(u)}] du =

Z s

qk

exp{αu} d

du
[exp{ah(u)}] du

occurring in (3.7), we must now proceed in a different way (ω can be decreasing pro-
vided

Pm
j=1Qj > 1). Before we carry out this estimate, we note that differentiating

(2.2) we can check that ϕ̇(t) is bounded as t→∞. Then it holds
1

h0(s)
=

ϕ̇(h(s))

ϕ(h(s))
= O(exp{−s}) as s→∞ .

Using this property, we have the following estimates:Z s

qk

exp{αu} d

du
[exp{ah(u)}] du

≤ exp{αu+ ah(u)}¯̄s
qk
+ |α|

Z s

qk

exp{αu+ ah(u)} du

≤ exp{αu+ ah(u)}¯̄s
qk
+

Z s

qk

|α|
α+ ah0(u)

d

du
[exp{αu+ ah(u)}] du

≤ (1 +O(exp{−qk})) exp{αu+ ah(u)}¯̄s
qk

as k →∞.
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Substituting this back into (3.7), we get

|z(s)|
L
≤Mk(1 +O(exp{−qk}) as k →∞

for any s ∈ Jk+1, i.e.,

z(s) = O(Ls/ logλ−1) as s→∞ .

From here we get

y(t) = z(s)ω(t) = z(logϕ(t)(ϕ(t))α = O((ϕ(t))α+logL/ logλ
−1
) as t→∞. ¤

If we put m = 1 and τ(t) = λt in Theorem 3.4, then ϕ(t) = t and we have

Corollary 3.5 Let y be a solution of the equation

ẏ(t) = A(t)y(t) +B(t)y(λt), 0 < λ < 1, t ≥ 0,

where A, B ∈ C(I) and let a, L be given by (3.2). If kB(t)k ≤ Qa for a suitable
real Q > 0 and every t ≥ 0, then

y(t) = O
³
tα+logL/ logλ

−1´
as t→∞, (3.9)

where α = logQ/(logλ−1).

We note that estimate (3.9) was derived in [13, Theorem 2]. Hence, Theorem 3.4
generalizes this asymptotic result.

If we put n = 1, A(t) ≡ −a and τj(t) = tγj (j = 1, . . . ,m) in Theorem 3.4, then
L = 1, ϕ(t) = log t and we have

Corollary 3.6 Consider the scalar equation

ẏ(t) = −ay(t) +
mX
j=1

bj(t)y(t
γj ), 0 < γj < 1, t ≥ 1, (3.10)

where a > 0 is a real constant, bj ∈ C(I) and |bj(t)| ≤ Qja for suitable reals Qj

and every t ≥ 1 (j = 1, . . . ,m). Then for any solution y of (3.10) it holds

y(t) = O ((log t)α) as t→∞,

where α is a (unique) real root of
Pm

j=1Qjγ
α
j = 1.
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