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Abstract

In the present paper a second order difference operator A7 of a second order
approximation of the differential operator A* defined by the formula

&
dx?
with domain D(A®) = {u € C?[0,1] : w(0) = u(1), v/ (0) = u'(1)} is pre-
sented. Here a(x) is a smooth function defined on the segment [0,1] and
a(z) > 0, 6 > 0. The positivity of A} in C} and Holder spaces is established.

A%y = —a(x) + du

Key words: Positive operator; Nonlocal boundary conditions; Holder space.

1 Introduction

Let us consider a differential operator A* defined by the formula

d*u
dz?
with domain D(A%) = {u € C?[0,1] : u(0) = u(1),+'(0) = «/(1)}. Here a(z) is a
smooth function defined on the segment [0, 1] and a(z) > 0, 6 > 0.

In [4, 5] the difference operator A} of a first-order of approximation for the
differential operator (1) was considered. The positivity of this operator in C} and
Holder spaces was established.

A*u = —a(x) + du, (1)
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Let us define the grid space [0,1], = {zx = kh, 0 <k < N, Nh =1}, Nisa
fixed positive integer. The number h is called the step of the grid space. A function
©" = {p, }y defined on [0, 1], will be called a grid function. To the operator A”
defined by the formula (1) we assign the difference operator A7 of a second order
of approximation defined by the formula

Upy1 — 2Up + Ug—1 M
Ayt = {_a(wk) o +5uk} , up = {up )y (2)
1

which acts on grid functions defined on [0, 1], with uy = ux and —ug +4u; — 3ug =
un_o —4un_1 + 3un.

We denote by Cj, = C[0,1]; and Cj¥ = C*[0, 1];, the Banach spaces of all grid
functions v" = {v3 }V 7! defined on [0, 1];, and equipped with the norms

thH = max |vg|,

Cn  1<k<N-1

o] = mex s m [k = vl
Co 1<k<N-1 1<k<k+r<N-1  (r7)®

In the present paper we will investigate the resolvent of the operator —A7, i.e., in
solving the equation

A‘fluh + At = fh (3)

or
Ug4+1 — 2Uug + U1
—ay

12 + dug + Aug = fi,

ak:a($k)7 fk:f(xk?)a ISkSN_L
ug = uy, — U2 +4u; —3ug =un_o —4duny_1 + 3uyn.

The positivity of the difference operator A} defined by the formula (2) in Cj, and
the Holder spaces C}' is established.
2 Green’s function

In this section we will study the strong positivity in C}, of the operator A7 defined
by formula (2) in the case a(z) = 1.
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Lemma 1 Let A > 0. Then the equation (3) is uniquely solvable, and the following
formula holds

N

N-1
u = (A7 + N = {ng,wrafj} : (4)
J=1

0

where
J(k, ;A +0) = J(k,N —1; A+ )
14 ph (RN*3+1)(4R—1)(I_ 2 — ph RN-2)-1
2+ 3uh 2u 2+ 3uh
for k=0 and k = N;

1+ puh (R? —4R+1)(RI—2 4 RN-I72) - 2 — ph RV-2)1

Tk, jid+0) = =573 2 >+ 3uh

for2<j<N—-2and k=0, k=N;

14+ ph 14 uh
24 3uh 2+ ph

J(k, ;A 46) = 2p) " H{RF1(2(R 4 3) + R*(R - 3))

+RY k(4 - R)(1 + R) + RVNTF=3(1 —4R)(1 + R)

2 — uh
2N —k—3 _1_9R2 1 1— RMY-"1(1 — K N—2\—1
+R (3R R*(BR+1))}( RY)™H( 72+3uhR ),

14+ ph 14 ph
2+ 3uh 2+ ph

+RNTFH(—2(R+3) + R*(3— R)) + RN 3(1 - 3R+ 2R*(3R + 1))

J(E,N =12 46) = — (2u) " HRF(R—4)(R+1)

2 — uh
2N-k=3(4R _ 1 DY(1 — RNY-1(f — H N—2\—1

14+ ph 14 ph
24 3uh 2+ ph

+(=1+4 3R+ R*(3— R))(RNFH72 4 RNFF=I72) 4 (1 — 3R) (RN 217K
+RIN-270HR) 4 9 RIITH(RN — 1) (R — 3+ RN"2(—1 4 3R))}

J(k,js A +9) = (2u) " H{(R — 1)3(RITF—2 4 R2N-2-5—k)

_ 2 — uh o
X(l—RN) 1(1_mRN 2) 1
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for2<j<N—-2andl1<k<N-—1. Here

R=(1+uh)", p= % (hA+6) + VO AT (A 19)))

Proof. We see that the problem (3) can be obviously rewritten as the equivalent
nonlocal boundary value problem for the first order linear difference equations

MWt |y =z, 1<K,
ug = uy, —uz+4u; —3ug=un_o—4un_1+ 3uy,

— =t pze = (Lt ph)fr,  1<kE<N-1
From that there follows the system of recursion formulas

up = Rup_1 + hRz, 1<kE<N,

zr = Rzi_1 + hfi, 1<kE<N-1.

Hence

k .
up = RFug + > RF"hz; 1 <k <N,
=1

N-1
zp=RN"Fen+ Y R7Fhf;, 1<k<N-1.
Jj=k

From the first formula and the condition uy = ug it follows that

N
UN = RNUQ + ZRN7i+1hZZ‘.
i=1

Since 1 — RN £ 0, it follows that

N N
uy =ug =15y ) R e = —y {thN+ > RN thl}
=1 i=1

1 N ‘ N-1 ‘ N-1 o
_ w (hR—i— ZR2N—2H—1h> 2N + Z hRN-i+1 Z R]—zhfj

i=1 i=1 j=t
N-—1 J

hZN + E h2 E RN+j72z+1fj

Jj=1

i=1

B 1 (R_R2N+1)
~ 1—RN 1 - R?
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N-1
R(1— R*)hzy + > h* [RN7IHL — RN )
j=1

1
" (1-RM(1-R?)

and for k, 1 <k <N —1,

N-1 k
1 . .
g = {thJrlZN + E RkJerJrlhzi} + E Rk*lJrthi

_ RN
1-R =1 =1
RF (R _ R2N+1) N-1 9 ) )
— hZN + Z h [RN7]+1 o RN+]+1j| f
_ RN _ P2 J
1-R%)) 1-R <
k N-1

+ZRN+/<: 22—|—1th_|_2 Z hQRk+j 21+1f

=1 j=1

1
1-R?

[Rk—kl +RN—k+1i| han

=

-1
h2 [RN7j+1 o RN+j+1:| f]
1

1

TACBM (I - RV) <

<.
Il

N-1

+ Z 52 Z Rk+jf2i+1fj i Z B2 i Rk+jf2i+1fj

i=1 j=k+1  i=1

1
- 1-—R?

[Rk+1 +RN—1¢+1} han

=

Rk

TR & 1 R R

1

+

<.
I

N-1
Z h2(R‘k*j|+1 _ Rk+]+1)fj

TR
7j=1

Now by using the formulas for uy, ug, ur and the condition
—u2 +4ur — 3ug = uny—2 — 4un_1 + 3un

we can write
R+ RN+1

72 hzn

ug +uy =2
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=

-1
h2 (RN7j+1 o RN+j+1) f]7
1

2

(1—RM)(1- ) ¢

+

(R? + RM)hzy

2
U] +UN—1 = T— 2
(R+ RN-Y)

T RY 1=

N-1
R2 Z h2 RN*j+1 o RN+j+1) f]
j=1

+

N-1

1 . , . .

— Z B2 <R\1—g|+1 1 RIN-1-l+1 _ p2+i RN+;> fir
j=1

Ug +UN_9 = (R3+RN 1)hZN

2
1T-R?
(R* + RN-?)

ARV 1—R2

N-1
Z h2 RN*j+1 o RN+j+1) f]
J=1

N-1
1 Z B2 (R\2—j|+1 4+ RIN-2-jl+1 _ Rpi+3 _ RN—1+j) fi

TR
7j=1

=T (R® + RN YHhzy
R*+RV?) (X . -
( ) 7 p2 (RN R4

TR - 1) &

Jgh2 (Rj—l 4+ RN-1-J _ Rit3 _ RN—1+j) fj
j=1
1

e

L1
1- R?

(R* = 1) fih® + (R* = 1) fn—1h?) .
Since
u2 +un—2 + 3 (up + un) = 4(u1 + un-1),

we have that
2

1- R?

(R? + RN72)

(R3+RN—1)th+ I—EM(1-R)

N-1
% Z h2 (RN7j+1 o RN+j+l) fj
j=1
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N—-1

1 4 ' ' |

+1—7R2 Z h2 (Rﬂfl + RNflfJ — RIT3 _ RN71+J) fj
j=1

R+ RN*!

e N

—h2(f1 + fn-1) + 6

N-1
Zh2 RN J+1 RN+]+1)JC
7=1

6

TACEY (- B

8
- 1—R?

A(R+ RN

(R?2 4+ RMhzy + - RN )

% Nz:l h2<Rij+l _ RN+j+1)fj
j=1
4y N1 ‘ , . .
T 2 h(RV + RN77 — RI+2 — RNH) f;.
iz

Hence from here zy can be found as

~hR?(—1+ R®)) (=14 RM)(f1 + fn_1)
2(—1+ R)R(=1+ RN)(=3R? + R® — RN + 8RN 1)

ZN —

N-1 . .
(6R? — 4R3 + R* + RN — ARVN) S p(RN-7+1 - RN4IHL) f;
j=1

2(—1+4+ R)R(—1+ RN)(—3R? 4 R? — RN 4+ 3RN*1)

_l’_

R ( 1+RN) Z (ijl +RN717j _Rj+3 _RN*].‘FJ') fj
J:
2(—1+ R)R(—1 + RN)(—3R? 1+ R® — RN 1 3RN+1)

4R2(—1 + RN) > h(R? 4+ RN-J _ Ri+2 _ RN+J)fj
Jj=1
2(—1+ R)R(—1+ RN)(—3R? + R3 — RN 4 3RN+1)

Now using the formulas for zy and ug = uy we obtain

e — e PPEN 4 ROAR - 1)(fi + fy1)
N7 R0 T 9(R—1)(—3R? + R® — RN + 3RN+1)

sz h2R1 J(R2 AR +1)(R¥ + RN) f,
J
Jj=

2(R —3R? + R3 — RN + 3RN+)
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1+ ph (RN=3 +1)(4R - 1) 2—ph N 91
= I- _
5+ 3uh 2 ( 2~|—3,uhR ) (fr + fy-1)
B Z 14 ph (R? — 4R+ 1)(Rj*2+RN*j*2)(I_ 2 — uh RN-2)1p
2+3Mh 24 2+ 3uh 7

The formula for u; in the case k = 0 and k£ = N is proved. Now, consider
1<k <N —1. We have that

1

_ k+1 N—k+1
uk—il_Rz |:R + R i|h2:N
Rk:

(1— RN)(1— RN-T)

N-1
+ Z h2 RN*j%’l . RN+j+1:| f]
J:1

1

+1—R2

N-1
Z h2(R‘k*j|+1 o Rk+j+1)fj
=1

= (=h*(=1+ R)(R*(3R® — 2R* — RS — 6R3 + 12RN T2 — RNT1 { 4RN+3
—4RN*T) 4 RN-R(RNFL L 9RN+3 _4R* — 3R + R — 3RN*2 4 6RNF)) 1y
+h%(=1+ R)(RF(3R® + R* — 3R® — RN*! 4 3RN*2 _gpN+3 _ gRN+4
+6R2NF2) 4 RN=F(RNHL _9RN*2 _4RN*3 L oR* + 6R3 + RS — 3R%)) fx_1)
x(2(R—1)R(1—R?) (-1+ R") (-3R*+ R* — RN + 3RN*))!

N-2
+ > R(R*TH(R - 1)(-1+ 3R - 3R* + R* + 6RN )
j=2

—RNFEHITF(1 4 4R — 4R? + R* — 8RN + 6RNT2) — RNT2h-i(1 4 3R 4 3R?
—6R? 4 3R* — 8RNT! 4 6RN*2) — R2NF2-i-k(R _1)*
+RVF(2(R - 1)R?(3R? — R® + RN — RN — 6RN*+! — 3RN+2 4 RN+3
+3R*NT) £ 2(R— 1)R(1 — R?) (-1 + RY) (=3R* + R® — RN + 3rN+1))~!

1+ ph 1+ ph
24 3uh 24 uh

+RN7F(4 — R)(1 + R) + RNT*3(1 —4R)(1 + R)

(2u) YR 2(R +3) + R3(R - 3))
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2 — ph
2N—k—3 _1_9R2 1 1 — RMY-L(T BV N2
HRNSER -1 2R R+ 1)1 - RY) TN - o RN

14 ph 1+ ph
24 3uh 2+ ph

+RNFY(—2(R+3)+ R*(3— R)) + RV*"3(1 = 3R+ 2R*(3R + 1))

(210) HRMR - 4)(R+1)

2 — uh
2N—k—3 . _ pNy—1/7 K N—2\—1
+R AR—-1)(R+ 1)1 —-R™) (I —2+3uhR ) N1

N—2
1+ ph 1+Mh 1 k-2 IN—2—j—k
RJ+ R -
ST 3uh ;{ + )

+(=14 3R+ R*(3— R))(RY 772 4 RNHF72) 4 9(1 — 3R)(R*NH7F
FR2NZ2704R) 4 oRH(RN — 1) (R — 3+ RN72(~1+ 3R))}

2 — uh

x(1= RN -5 3uh

——— RN fih.

Lemma 1 is proved.
The grid function J(k,j; A 4 J) is called the Green’s function of the resolvent
equation (3). Notice that

J(k,j; A+ 06)=J(J,k;A+6) >0

N—1 1
) = — 1<y < N.
;J(k,j,)\+5)h 1o <j<k<

Thus, we obtain the formula for the resolvent (A + A¥ ) in the case A > 0. In the
same way we can obtain a formula as (4) for the resolvent (A 4+ A¥) ™" in the case of
complex . But we need to obtain that 1+2uh,2+3ph,1— RN, and 1 — ﬁ?‘fﬁRN 2
are not equal to zero.

3 Positivity of difference operators in C},

Theorem 1 For all A\, A € R, = {\: |argA\| < ¢, ¢ < 7/2} the resolvent
(M + A7)~ Y defined by the formula (4) is subject to the bound

|or+ap)7| < M6+ A

Cp—Ch

where M(p,0) does not depend on h.
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The proof of this theorem is based on the following lemmas:
Lemma 2 [4] If Re\ > 0, then Rep > 0.

Lemma 3 [4] The following estimate holds

lul = VA 4.

Lemma 4 [4] The following estimate holds:

1
R| < <1,
1l < L+ +/|A+0|hcose

where |p| < /2.

Lemma 5 The following inequality holds:

2-ph |y
2+ 3uh| —

where h is sufficiently small.
Proof. Let p = pe'® and h be sufficiently small, then ph is also small since
arg = 2~ arg(A + 0),
p = p(cos B+ isinf3).

Then
jarg 4l = 18] < /2.

Now

' 2 — ph(cos B + isin ) ' /(2= phcosB)? + (phsin B)?

2+3ph(cos B +isinB)| /(2 + 3phcosB)2 + (3phsin f)2
_ 4 — 4phcos 8 + p2h? cos? B + p2h2sin? B
V44 9p2h2 cos? B + 12ph cos B + 9p2h2 sin® 3

| 4—4phcos S+ p?h?
~\ 4+ 9p2h2 + 12phcos B~

Lemma 6 The following estimate holds:

14 ph <1
24 3uh| —
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Proof. Let pn = pe’® = p(cos B + isin3). Then

1+ ph(cos B +isinf3) | (14 phcos8)? 4 (phsin 3)?
’2 + 3ph(cos B + isin ) ’ ~ \/ (2+3phcos B)2 + (3phsin B)2

B 1+ 2phcos 8 + p?h?
[ 44+ 12phcos B + 9p2h2 —

Lemma 7 The following inequalities hold:

2 — ph

_ RN-2)-1| 5
24 3uh ) 1>0,

(1

|(1 - RN)71| > 07

where h 1s sufficiently small.

The proof of this lemma is based on the triangle inequality and on the estimates
of Lemmas 4 and 6.

In the sequel for the proof of strong positivity of the difference operator in C},
we will need to consider the following nonlocal boundary value problem

{ _%4-(5—1—)\)%:]% l<k<N-1, (5)

ug = un, —ug +4uy — 3ug = uny_o — duny_1 + 3uny + 2ho.

Theorem 2 Let A € Ry.Then for the solution of the nonlocal boundary value prob-
lem the following inequality holds:

1
< M(6, ‘ h‘
OISI}%XNWH_ (0 @)(HW f

MG, 90)|¢|> ,

Ch

where M (8, p) does not depend on f, ¢ and h.

Proof. Let uy be a solution of the general nonlocal boundary value problem (5)
and wy, be a solution of the nonlocal boundary value problem (3) in the case aj = 1.
Then we can write

U = Wk + Vg,

where v, is the solution of the following nonlocal boundary value problem

h2

—W—F(é—i—)\)vkzo, ISkSN—l, Vo = UN,
—vg +4v1 — 3vg =vN_2 — 4un_1 + 3un + 2h.
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Using the formula

2 1+ ph (RF1 4+ RN"1R)g

p243uh (1 2 RN -2)

VE = , 1<E<N-1,

for the solution of vy and by Lemmas 6 and 7, we obtain

Theorem 2 is proved.

4 Positivity of the difference operator Aj in (),

Now we will investigate the strong positivity of the difference operator (2) in C},. In
the sequel we will need the following difference analogue of Nirenberg’s inequality
which was obtained by Sobolevskii and Neginskii [3]:

Ug+1 — Uk

- (6)

max
0<k<N-1

Upy1 — 2Up + Uk—1 —
< K |a max [+ 5 ‘+o¢1max lugl ]|,
1<k<N-1 h 0<k<N

where K is a constant, o > 0 is a small number.

We consider the difference operator Aj defined by the formula (2). If a, = a =
const, then using the substitution A + § = aA; and the results of Section 2, we can
obtain the estimate

|ar+an™| . < Meo)+ay

Cp—Cp

or

1
< J—
s, sl < M. (5757 116, +161)

and the coercive estimate

[ugr1 — 2ug + ug_1|
<M 1) 7
| Jpax 2 < M (p,0) | nax | fx| (7)

for the solutions of the difference equation with constant coefficients. Here M (¢, d)
does not depend on h and .

Now, let a(x) be a continuous function on [0,1] = €. Similarly to [1], using
the method of frozen coefficients and the coercive estimate for the solutions of the
difference equation with constant coefficients, we obtain the following theorem.
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Theorem 3 Let h be a sufficiently small number. Then for all X € R, and |\ >
Ko(8,¢) > 0 the resolvent (A + A¥)™1 is subject to the bound

|or+ap™| < Mo+ N (®)
Cp—Ch
where M (p, ) does not depend on h.

Proof. Given ¢ > 0, there exists a system {Q;}, 7 = 1,...,r, of intervals

and two half-intervals (containing 0 and 1, respectively) that covers the segment
[0,1] and such that |a (z1) —a (z2)| < €, 21,22 € Q;, because of the compactness
of [0,1]. For this system we construct a partition of unity, that is, a system of
smooth nonnegative functions ; (z) (i =1,...,7) with supp§; (z) C Qj, £(0) =
£,(1), €5(0) = €(1) and &y(x) + -+ &,(x) = 1in Q= [0,1].

It is clear that for positivity of the difference operator (2) it suffices to establish
the estimate

< 7
Ogg%mm_|M+1K@%4uu (9)
for the solutions of difference equation (3).
Using wy = &;(wx)ug, we obtain
wo =wyn, — wz+4w; — 3wy =wy_2 —4wy_1+ 3wn + ¢,
where
¢ = —(§;(2h) — §;(0))uz + 4(§;(h) — £;(0))wa
_(fj(l —2h) - fj(l))UNﬁ =+ 4(fj(h) - éj(l))uNfl
and 5
(6 4+ \) wy — g e~ Z;k + w1
§i(an) —&§(Th—1)  wp — up—
:fj(l'k:)fk—ak{J h] Lk hkl

+ §j(@ry1) — 252(;%) +¢&; (*Tk:fl)uk n fj(afkrﬂ)h— §;(wk) ) Uk+1h— Uk} .

Then we have the following nonlocal boundary value problem

 Wht1 — 2w + Wiy
h2

6+ N wy —a =F, j=1,...,r (10)

wo =wyn, —wz+4w; — 3wy =wy_2 —4wy_1+ 3wN + ¢,
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where a/ = a(2’) and

F = §i(xr) fe — an {gj(xk) _h£j<xk1) .Uk _huk—l
+ & (@) — 251'(;’“) T 5]'(3”’%1)% n §i(wri1) = &(@r)  upq — Ulc}
+ [ak _ aj] Wg41 — Q;:;k + wk,l'

Since (10) is a difference equation with constant coefficients, we have the esti-
mates

J
(U AD g, ol < K (.0) | o ||+ e Dlal] . aem

Wky1 — 2w + Wg—1
72

Using the definition of @); and the continuity of a(x) as well as the smoothness
of &;(z), we obtain

max

1<k<N-1 < M(yp,9) [ max ’Fg’ + (1 +[A[) Mﬁ@ - (12)

1<k<N-—1

i Uk+1 — Uk’
FJ‘ <M ’—
s [ < M. 0) [mN il + g fuel +  _max | ==

Wg1 — 2w + W1
72

+e& max
1<k<N-1

and
< M m .
[po] < M (e, 5)hogkag(N|uk|

Assume that 0 < e < m, then from the last estimate it follows that

§i(@p1)un1 — 28 (z)up + §(Tp—1)up—1
h2

max
1<k<N-1

M(yp, )
= 1—5M(<p,5){

| nax | | ful + omax, ||

U1 — g
Pl 7 7R
o max o +(1+[ADhe ¢,

max | fi| + max |uy|

< M(p,9)
1<k<N-1 0<k<N

hon ‘F’g‘ ~ 1—eM(p,0)

1<k<N-1
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+ max w} + (14 |A)h max |ug|.
0<k<N-—1 h 0<k<N

From this and the estimate (11) it follows that, for any j =1,...,7r,
(1 IN) s, [ e

M(p,9)
< K(p,§)——————
< Ky, )1 —eM(p,0) 1<kEN-1 [
+ max [ers = el +(1+(1+ ]/\])h) max |ugl| -
0<k<N-—1 h <k<N
With the triangle inequality, we have
Uf+1 — 2Uf + Ug—1
<
13%%4 h? < Ki(y, ) [1<1;crl<azif{1 |l (13)
|uk+1 — ’
+ pnax - + (14 (L4 |A)h) oax luk|| ,
|Ug+1 — ugl
< Ll v -
(U D s, o] < M3,0) | g1l e 1250 (14)

+(1+ 1+ m .
(L1+( [ADR) ngagnluk@
Now using the inequality (6) we obtain

U1 — ug
F = 1+ (1+ |A hrl Tk
(Jpax el + (L (L [ADR) max fug| +  max | -

< Kalnd) | o |l + @ (1 (1 WD) . [
U1 — 2up + Ug—1
h? '

Hence for small « from the last inequality and the inequality (13) it follows that

+a max
1<k<N-1

F < Ms(p,9) [ (1+(1+|)\|) ) n}cax ]uk]+1<2n<a§ 1|fk|] )

Therefore from (14) it follows

A < Ma(p,8) o™t (14 (L4 |A)h :
(U AD s, o] < Mot ) [ ™ (1 (14 IADA) o el + o 15

Hence for all /\,
MQ(QO’ 5)
200 — My (¢, 0)h

we have the estimate (9). Theorem 3 is proved.

|A] >

_1:K0(3075)7
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5 Structure of the fractional spaces and positivity of
difference operators in C}

The operator A7 commutes with its resolvent (A + Aﬁ)fl. Therefore, by Theorem
3 we obtain that the operator A7 is positive in the fractional spaces Eq(Ch, A})
generated by the difference operator Aj. Recall that E.,(Cj, A7) is the set of all
grid functions u” for which the following norm

|+

is finite. Since for fixed h the operators A} are bounded, this norm is finite for all
grid functions

Let C'h (0 < B < 1) denote the Banach space of all grid functions f* = {f}3'~
with fi = fy_1 equipped with the norm

|7 .= max s = Fisl [
Cf  1<k<ktj<N-1  (jT)P

The main result of this paper is the following theorem on the structure of the
fractional spaces Eq(Ch, A7).

= sup \*
Ea(Ch,A%) x>0

AR+ A o],

h Chn

Theorem 4 For 0 < a < 1/2 the norms of the spaces Eo(Ch, AY) and C?*
equivalent uniformly in h, 0 < h < hyg.

The results of Theorems 3 and 4 permit us to obtain the positivity in Cﬁa norms
of the operators Aj7.

Theorem 5 Let h be sufficiently small number Then for all X € Ry, |\| > Ko (3, ¢) >
0 and 0 < a < 1/2 the resolvent (\ + A”’") is subject to the bound

M(p,6)

Jo+ 407 e = 2T o0

(1+AD~ (15)

where M(p,d) does not depend on h and c.
The proof of Theorem 4 relies on certain properties of Green’s function J(k, j; A+
§) of the resolvent equation (3). In the case a(r) = a® we have that

N

N-—1
AL+ 0= Tk, i A+ 0) fih (16)
Jj=1 0
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where
J(k, ;A +0) = J(k,N —1; A+ )
1+ ph (RY34+1)4R-1)
2+ 3uhy 24
for k=0and k=N,

2—phi N9\ 1
j=
( 2 + 3phy )

1+ phy (R —4R+1)(RI724 RN-172) ;o 2-ih N-2)1

T(k, ji A 40) = — _
(k532 +0) = =573 2% 5 ¥ 3l

for2<j<N-2and k=0,k=N;

_ _ldph T4phy ok 20
T 1 +8) = 5tk o o) R (R 48) + (R - 3)

+RN"F4 - RY1 + R) + RN**3(1 —4R)(1 + R)

2 — uh
2N—k—3 2 Ny—1 Hn1 S N—2\-1
—-1-2 1 1-— [I——
+R (3R R*(BR+1))}( RY)™( 2+3,uh1R ),
_1+Mh1 1+ puh
2+ 3phy 24 phy

+RNF Y (—2(R+3)+ R’(3— R)) + RN*F=3(1 — 3R+ 2R*(3R + 1))

JE,N —1;\+0) = (2u) " HRF(R—-4)(R+1)

e _ 2—,uh1 o\ _
2N—k—3 Ny—1 N—-2\—-1
+R 4R—-1)(R+1 1—R I—— R

: L4 phy 1+phy ooy 3/ pjtk—2 | p2N-2—j—k
ky ji A+ 6) = 5 13 (Rit j

+(=143R+ R*(3— R))(RNM772 4 RN*F772) 4 2(1 — 3R)(R*N 7 F
FRINZ2TIRY L 9RUR(RN — 1) (R — 3+ RV "2(-1+3R))}

_ 2 — uh o\
x(1—RM) 1(1_—2+3uhllRN 2)-t

for2<j<N-2and1<k<N —1. Here

R=(1+ph))"Y hy =a'h,

N

= (h1(A+6) + \/(/\ +6)(4+ hF (A + 5))) :
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A direct consequence of the last formulas is

N—-1 1
;Jk],A+5h1 s (17)

Now, we will give the proof of Theorem 4. First we consider the case a(z) = a?.

Let a > 0. For any A > 0 we have the obvious identity

4]

1
T z\—1 ph h h
O R R e SRR R P S TN
By formulas (16), (17) and the identity (18) we can write
N-1 5
(AL O+ AT e =AY T i A+ 0) [fn = fil b+ 5 fme (19)
j=1
Let k£ = 0. Then using (19) for m = 1, we obtain
N—1
A% AT hy
{45 A+ A Yo = A;JUJ,AWL(;)[JH f]]h1+)\ 51
N—2 ; ;
1+ phy (R2—4R+1)(RI24+ RN 772 2—ph _
< puhy 7 +3p
1+ phy (RN=3+1)4R - 1) 2 — uhl _ )
I - _
+>\2+3ﬂh1 o ( 2+3Mh A I 1]h1+)\+5f1

2 — /Jhl
24 3Mh1

- NZ‘3 1+ phy (R2— 4R+ 1)RI2

RN—2 -1 —f1h

(-

- Ni” Ltphy (R 4R+ RN 22—y

Y I— — falh
2+ 3uhy 2 U= ) i fl
I+phy (RZ—4R+1)(RN=*+1),  2—ph1 _n_ o4
_ I 11— _ — 1.
A 3, 2/ ( 5T 3y e e s ww 2
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We have that

1
1+\/|)\+5|h1 cos p)i—2

| 1]

N-3
X[ {Af 0+ af) T | < Mne ST
7=3

|f1— filh

1

1+ i (1+\/|)\+5|h1 cos p)N—i—2
A m |fn—1 — filh
=3

Pt
"‘)\Ha |f1— f2’h1+)\1+a| |’fN 1— fn—2lh1 +

| | )\+5’f1’]

N-3

M(p, 0 Z ——————(( = D)m)**In

= 3—2)“

1 (07
AL pli2e ) Hfh .

VA+6

< Mi(.9) [ 7]

cze’
Thus,
X [{AT O A7) Y| < M, 8) | 7]

. 20
e (20)

The proof of the estimate

X [{AR (O 47) 7 | < (e, 9) || 7]

20
Ch

follows the scheme of the proof of the estimate (20) and is based on the formula
(19) for m =N —1. Let 1 <k < N — 1. Then using (19) for m = k, we obtain

N—-1
{AE N+ AD T = ; TG A+ 8) [ — f5] 1 + oy,
14 phy 14 phy ke ,
T 3ah Ty 2 BT @R 4 3) + RA(R - 9))
B - 2- Mhl _
+RNTF3(1 —4R) 1+ R)}(1 — RY) L1 - m .

1+Mh1 1+/Jh1
2+3/Lh12+/¢h1

(2u) " H+RN"F(4 - R)(1+R)

2 —
FRN KSR 2R2 3R+ 1)} (1 - RY) (I - oL pN2) 1 gy
24 3phy
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LA phy T+ phy
2+ 3uhy 2 + phy

(2u) " H+RVF 1 (—2(R + 3) + R*(3— R))

2—,uhl

+RNTF3UR - 1) (R+ 1)1 — RN) NI - 2+ 3phy

RN i — fnoa)

1+uh1 1+,Uh1

— 20) " HRF(R—4)(R+1
2+3uh12+uh1(”) {R¥( J(R+1)

2—Mh1

NFE=3(1 — 2R? D)}1 =RV — ———
+RN1 - 3R+ 2R BR 4+ 1)1 - RY) NI - S

RN f = fil

1+ phy 14 phy
2+3uh12+uh1

N-2
(207N D {(R—1)P R

+(=1 43R+ R%*(3 - R))RN =2 1 2(1 - 3R)R*N 21—k}
2 — uh
Ny—1 BV S N—2y—1
— 1—- =" —f1h
x(1=R")"( 2+3Mh1R ) = filha
N—-2

(20) 7N Y _{(R—1)*RITH2

=2
+(=14 3R+ R%*(3— R))RN-*J=2 1 9(1 — 3R)RMN-2+i~F}

2—phi ,n_2\-1
B bl _1h
2+3Mh1R ) fe = fil

1+ phr 14 phy
2+ 3phy 24 phy

x(1—-RM)™(1

1+uh1 1+Mh1
2+3uh12+uh1

N-2
(@2u) A Y _{(R—1)? RN

+(—=14+ 3R+ R%(3— R))RNTFI=2 1 9(1 — 3R)(R?N-2-J+k

- 2 — ph —2\—
x(1 = RY) (1= e RY ) T (v = i)

1+ phy 14 phy
21 301 2 + il

N-2
(2p) A D _{(R - 1P RN
Jj=2

+(=1+ 3R+ R*(3— R))RNTF772 4 2(1 — 3R)(R*N 277tk
2 — phy

x(1—RM)7t1 - S 3

RN e — fnaal

1+ phy 14 phy

N-2
2+3Mh1 2+/Lh1 (2/1)*1)\ Z 2R|J*k|(RN o 1) (R_3+RN72<_1 +3R))

Jj=2
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x(1— RNy (1 - 27 pveoy p e

2 + 3uhy I

0
A+
The proof of the estimate

)\a

AR+ AD T "] < (e, 0) || 7]

20
Ch

follows the scheme of the proof of the estimate (20) and is based on the last formula.
Thus, for any A > 0 and k£ = 0,..., N we establish the validity of the inequality

AL O+ AT | < Ma(,0) [ £

ool
This means that
71,

Now let us prove the opposite inequality. For any positive operator A7 we can write

SR

Eo(Ch,Az) — cze

ON-1

v—/ZJ (kyjst +8) AT (t + AZ)™) fhy dt.

Consequently,

CON—-1
fi = frsr = / ST (B gyt +0) = T (k1 jst+ O t0AL (t+ AF) ! ik dt,

whence
o0 N-1
|fk_fk+r’§/ta T (k, it +8) — J(k:+r,j;t+5)yh1dtHfh .
1 Ea(Ch.A})
0 Jj=
Let

R N-1
T = |rh1\2a/t“ D 1T (kygst 4 0) = T (k 47, st + 6)| ha dt.
0 j=1

The proof of the estimate

| fx — fk+r\ < Hfh’

lrhy |

Eo(Ch,AZ)
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follows the scheme of the paper [2] and is based on the Lemmas 2, 3, 4 and 5. Thus,
forany 1 <k <k+r <N — 1 we have established the inequality

o = forl o M )H h‘

|7~h1]2a T a(l -2« Eo(Cp,A2)
This means that the following inequality holds:
|#ce. < zazzm 17
6’20‘ ~ a(l-2a) Ea(ChAZ)

Theorem 2 in the case a(x) = a? is proved. Now, let a(x) be a continuous function
and let x, g € [0,1] be arbitrary fixed points. It is easy to show that

(AR = 43°) (A3 | < M.
Therefore, using the formula
AR AR+ = A (A7 £ 0) T

-1

FA+ AR TH[AT — A7) (A)THAT (AP +0) T fR

we derive

st <

Ea Ch’ 1‘0)

+M)\H()\+Aﬁ)_1‘

!

|

Chp—Ch Eo(Ch,AL0) Eo(Cp,AL0) .

From that it follows

i

7]

Ea(Cy, A0 Eu(Ch,A%0)

Theorem 4 is proved.

The results of this paper and the abstract results of papers [6, 7, 8, 9] permit
us to investigate the well-posedness of the nonlocal boundary-value problems for
elliptic differential and difference equations in the Banach spaces.
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