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Abstract

In this paper we consider the nonuniform Timoshenko beam, we prove that
the model can be stabilized by one internal control force .

1 Introduction and results

The equations of motion of a Timoshenko beam are½
αwtt = (β(ϕ+ wx))x,

γϕtt(x, t) = (δϕx)x − β(ϕ+ wx),
on (0, 1)×R+. (1)

The function w is the transverse displacement of the beam and ϕ is the rotation
angle of a filament of the beam. The coefficients α, β, γ and δ are the mass per unit
length, the polar moment of inertia of a cross section, Young’s modulus of elasticity,
the moment of inertia of a cross section and the shear modulus repectively. The
natural energy of the beam is

E(t) = 1

2

1Z
0

©
α | wt |2 +γ | ϕt |2 +β | ϕ+ wx |2 +δ | ϕx |2

ª
dx. (2)

The aim of this paper is to study the internal stabilization of this system. We
will assume that

α, β, γ and δ are positive C1 functions of x. (3)
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We will first prove that it is possible to stabilize uniformly (with respect to
the initial data) this beam, by using a unique internal feedback acting only on the
rotation angle, namely:½

αwtt = (β(ϕ+wx)x ,
γϕtt(x, t) = (δϕx)x − β(ϕ+ wx)− a(x)ϕt ,

on (0, 1)×R+, (4)

and we consider two boundary cases

w(0, t) = w(1, t) = 0, ϕ(0, t) = ϕ(1, t) = 0, (5)

and
wx(1, t) = 0, w(0, t) = ϕ(0, t) = ϕ(1, t) = 0, (6)

where a is a positive continuous function of the space variable. Indeed, we
prove the uniform stability holds for system (4), (5) or (4), (6) provided that the

wave speeds
δ

γ
and

β

α
are the same on the whole interval. If the wave speeds are

different on the whole interval, we prove the asymptotic stability and the nonuniform
stability.

The first analysis for a Timoshenko beam with variable physical parameters
seems to be the one of S. W. Taylor [7]. He studied the boundary control of system
(1) and considered two situations, one of them being the case where a force f and
a torque τ are both applied to the free end, the beam being clamped at the other.

Our method is based on the computation of the essential type of the associated
semigroups for the nonuniform stability, thanks to the result of Neves et al. [5] ifr

β

α
6=
s

δ

γ
on [0, 1],

and the construction of the Lyapunov function for the uniform stability ifr
β

α
=

s
δ

γ
on [0, 1].

Our results is the following:

Theorem 1 Under the assumption (3), assume that a ∈ C([0, 1]) and

a ≥ a0 > 0 on (0, 1).

Then:
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• If β

α
6= δ

γ
on (0, 1), then the systems (4), (5) or (4), (6) are asymptotically

stable but not uniformly stable.

• If β

α
=

δ

γ
on (0, 1), then the systems (4), (5) or (4), (6) are uniformly stable.

As an immediate consequence of this result, we get

Corollary 2 ([6]) If the physical parameters are constant, then the system is uni-

formly stable if and only if
β

α
=

δ

γ
.
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