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Abstract

By means of certain functional relations, the equivalence of impulsive delay
differential equations and impulsive differential equations is established. Based
on some well known results for impulsive differential equations and for delay
differential equations, nontrivial consequences on existence and nonexistence
of periodic solutions of impulsive delay differential equations are obtained.
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1 Introduction

Impulsive delay differential equations may express the evolution of some real world
simulation processes which depend on their prehistory and are subject to short time
impulses. The past dependence causes the presence of the delays in the differential
equation as well as in the impulsive conditions and this often turns out to be the
cause of phenomena substantially affecting the motions. Such processes occur in the
theory of optimal control, theoretical physics, population dynamics, biotechnologies,
economics, etc. Most of the equations considered in the literature have involved
the delays only through the state variable and impulsive conditions of the form
∆x(θk) = Ik(x(θk)) have been considered, where the solution value in the impulses
is determined by its limit from the left and independent of prehistory, we name
here [1, 4, 7]. The present paper presents a new class of impulsive delay differential
equation of the form½

x0(t) = f(t, x(t), x(t− τ1), . . . , x(t− τm)), t 6= θk,
∆x(θk) = Ik(x(θk), x(θk−q1), . . . , x(θk−qm)), k ∈ Z, (1)
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in which the delays appear through the state variable and through the jumps.
These impulsive conditions are natural for the equation considered since at any
discontinuity point the solution value is also defined by its prehistory. By means
of certain functional relations, the equivalence of impulsive delay differential equa-
tions and impulsive differential equations is established. Based on some well known
results for impulsive differential equations [5, 6] and for delay differential equations
[2, 3], nontrivial consequences on existence and nonexistence of periodic solutions
of impulsive delay differential equations are obtained. We present, moreover, some
general remarks.

2 Preliminaries

Let Rn be the Euclidean n-space, R the set of real numbers and R+ denotes the
positive real numbers, Z is the set of integer numbers and N denotes the set of
natural numbers. Let a sequence {θk}, k ∈ Z, be fixed in R such that θk+1 > θk
with |θk| → ∞ as |k| → ∞. We mean by C(Rn) the space of continuous functions
over the Euclidean n-space. Assume, moreover, that the equation (1) satisfies the
conditions

(A1) f ∈ C(R1+n(m+1);Rn) and f is ω-periodic in t;

(A2) Ik ∈ C(Rn(m+1);Rn), k ∈ Z, and Ik are p-periodic in k.

The constant parameters τi, i = 1, . . . ,m, represent the delays in the differential
equation and qr, r = 1, . . . ,m, represent the delays in the jumps. We assume that
the following conditions are valid throughout the rest of the paper.

(H1) There exists ki ∈ N, i = 1, . . . ,m, such that τi = kiω for ω > 0;

(H2) There exists jr ∈ N, r = 1, . . . ,m, such that qr = jrp for p ∈ N;
(H3) There exists p ∈ N such that θk+p = θk + ω, k ∈ Z.
The novelty of this paper is based on the consideration of the delays in the

jumps. Thus, we assume that every interval of length τ contains more than l points
θk, k ∈ Z, where l = max{qr : r = 1, . . . ,m} and τ = max{τi : i = 1, . . . ,m}. By
∆x(t) we mean as usual the difference x(t+)−x(t−), where x(t+) = limh→0+ x(t+h)
and x(t−) = limh→0− x(t+h). We assume that the solutions are left continuous and
hence write x(t−) = x(t). An absolutely continuous function x(t) in every interval
[θi, θi+1) is said to be a solution of (1) if it satisfies the differential equation in (1)
for almost every t and the impulsive conditions for t = θk. Associated with equation
(1) we consider the impulsive differential equation of the form½

x0(t) = f(t, x(t), x(t), . . . , x(t)), t 6= θk,
∆x(θk) = Ik(x(θk), x(θk), . . . , x(θk)), k ∈ Z. (2)
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Definition 1 Equations (1) and (2) are said to be functionally equivalent relative
to the functional relation

x(t+ ω) ≡ x(t) (3)

if the ω-periodic solutions of equation (1) are also ω-periodic solutions of equation
(2) and the ω-periodic solutions of equation (2) satisfy (1).

3 Existence of periodic solutions

In this section, we shall use the definition of functional equivalence in the considered
sense of systems (1) and (2) to establish existence and nonexistence of periodic
solutions of impulsive delay differential equations.

Theorem 1 Let conditions (A1), (A2) and (H1)—(H3) be fulfilled. Then, equa-
tions (1) and (2) are functionally equivalent relative to relation (3).

Proof. It suffices to prove that any ω-periodic solution φ(t) of equation (1) is an
ω-periodic solution of (2) and vice versa. Let φ(t) be an ω-periodic solution of
equation (1). Then½

φ0(t) = f(t, φ(t), φ(t− τ1), . . . , φ(t− τm)), t 6= θk,
∆φ(θk) = Ik(φ(θk), φ(θk−q1), . . . , φ(θk−qm)), k ∈ Z.

From conditions (H1)—(H3) it follows that½
φ0(t) = f(t, φ(t), φ(t− k1ω), . . . , φ(t− kmω)), t 6= θk,

∆φ(θk) = Ik(φ(θk), φ(θk − j1ω), . . . , φ(θk − jmω)), k ∈ Z.
The periodicity of φ implies that½

φ0(t) = f(t, φ(t), φ(t), . . . , φ(t)), t 6= θk,
∆φ(θk) = Ik(φ(θk), φ(θk), . . . , φ(θk)), k ∈ Z,

which is equation (2). The converse is proved by observing that any periodic solution
φ(t) can be written as φ(t− kmw) which is (by condition (H1)) equal to φ(t− τm).

Theorem 2 Let conditions (A1), (A2) and (H1)—(H3) be fulfilled. Then, equation
(1) does not have more than an n-parameter family of ω-periodic solutions.

Proof. Let φ be an ω-periodic solution of equation (1). Then,½
φ0(t) = f(t, φ(t), φ(t− τ1), . . . , φ(t− τm)), t 6= θk,

∆φ(θk) = Ik(φ(θk), φ(θk−q1), . . . , φ(θk−qm)), k ∈ Z.
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Similar to the arguments of the previous proof, it follows that½
φ0(t) = f(t, φ(t), φ(t), . . . , φ(t)), t 6= θk,

∆φ(θk) = Ik(φ(θk), φ(θk), . . . , φ(θk)), k ∈ Z. (4)

Equation (4) is a system of n first order impulsive differential equations whose
general solution contains n arbitrary constants. Thus, since (4) has not more than
an n-parametric family of ω-periodic solutions, (1) cannot have more than an n-
parametric family of ω-periodic solutions.

Consider the linear equation
x0(t) +A0(t)x(t) +

mX
i=1

Ai(t)x(t− τi) = h(t), t 6= θk,

∆x(θk) +B0kx(θk) +
mX
r=1

Br
kx(θk−qr) = Jk, k ∈ Z,

(5)

together with the following conditions:

(B1) h ∈ C(Rn) and h is ω-periodic in t;

(B2) Jk are p-periodic in k;

(B3) Ai ∈ C(R;Rn×n), i = 0, . . . ,m, and
mX
i=0

Ai(t) is ω-periodic in t;

(B4)
mX
r=0

Br
k are p-periodic in k.

Theorem 3 Let conditions (B1)—(B4) and (H1)—(H3) be fulfilled. Then, equation
(5) has a unique ω-periodic solution if the equation

x0(t) +
mX
i=0

Ai(t)x(t) = 0, t 6= θk,

∆x(θk) +
mX
r=0

Br
kx(θk) = 0, k ∈ Z,

(6)

has no periodic solutions of period ω, except the trivial one.

Proof. Consider the equation
x0(t) +

mX
i=0

Ai(t)x(t) = h(t), t 6= θk,

∆x(θk) +
mX
r=0

Br
kx(θk) = Jk, k ∈ Z.

(7)
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Then, by Theorem 1, equation (7) is functionally equivalent to (5). However, by
[6, Theorem 53], equation (7) has a unique ω-periodic solution. Thus, equation (5)
has a unique ω-periodic solution.

In the case n = 1, we may establish a more specific condition for equation (5) not
to have an ω-periodic solution. Rewrite (5) as follows:

x0(t) + a0(t)x(t) +
mX
i=1

ai(t)x(t− τi) = 0, t 6= θk,

∆x(θk) + b0kx(θk) +
mX
r=1

brkx(θk−qr) = 0, k ∈ Z,
(8)

where the following conditions are satisfied:

(C1) ai ∈ C(R) and
mX
i=0

ai(t) is ω-periodic in t;

(C2)
mX
r=0

brk are p-periodic in k;

(C3)
mX
r=0

brk > −1.

Theorem 4 Let conditions (C1)—(C3) and (H1)—(H3) be satisfied. IfZ ω

0

mX
i=0

ai(r) dr −
X

0≤θk<ω
ln
³
1 +

mX
r=0

brk

´
6= 0,

then, equation (8) has no nontrivial ω-periodic solutions.

Proof. Suppose, on the contrary, that equation (8) has an ω-periodic solution φ(t)
such that φ(0) 6= 0, otherwise, by the uniqueness theorem we will have φ(t) = 0,
see [5] for more details. Clearly

φ0(t) +
mX
i=0

ai(t)φ(t) = 0, t 6= θk,

∆φ(θk) +
mX
r=0

brkφ(θk) = 0, k ∈ Z.

It follows that

φ(t) = x0 exp

Ã
−
Z t

0

mX
i=0

ai(r) dr

! Y
0≤θk<t

³
1 +

mX
r=0

brk

´
,
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where φ(0) = x0 6= 0. From the periodicity of φ, we have

exp

Ã
−
Z ω

0

mX
i=0

ai(r) dr

! Y
0≤θk<ω

³
1 +

mX
r=0

brk

´
= 1.

It readily follows thatZ ω

0

mX
i=0

ai(r) dr −
X

0≤θk<ω
ln
³
1 +

mX
r=0

brk

´
= 0,

which is a contradiction. This completes the proof.

Corollary 1 Let conditions (C1)—(C3) and (H1)—(H3) be satisfied. If equation (8)
has nontrivial ω-periodic solutions, thenZ ω

0

mX
i=0

ai(r) dr −
X

0≤θk<ω
ln
³
1 +

mX
r=0

brk

´
= 0.

Consider the scalar equation½
x0(t) = a(t)x(t) + b(t)x(u(t)), t 6= θk,

∆x(θk) = ckx(θk) + dkx(θk−j), k ∈ Z, (9)

where a(t), b(t) ∈ C(R) and u(t) ∈ C(R+) such that u(t) ≤ t. Let there exist a
positive number q and a monotonic differentiable function s = ψ(t) for t 6= θk such
that ψ(t)−ψ(u(t)) = q and ψ(θk) = ξk. Assume that x(t) = z(ψ(t)) = z(s), t 6= θk,
then

x0(t) = z0(s)ψ0(ψ−1(s)), s 6= ξk,

and
x(u(t)) = z(s− q), s 6= ξk.

Therefore
z0(s) = a1(s)z(s) + b1(s)z(s− q), s 6= ξk,

where

a1(s) =
a(ψ−1(s))
ψ0(ψ−1(s))

and b1(s) =
b(ψ−1(s))
ψ0(ψ−1(s))

.

Moreover, since

∆x(θk) = ∆z(ψ(θk)) = ∆z(ξk) and x(θk−j) = z(ψ(θk−j)) = z(ξk−j),

we have
∆z(ξk) = ckz(ξk) + dkz(ξk−j),
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where
ck = ck(ψ

−1(ξk)) and dk = dk(ψ
−1(ξk)).

Hence, (9) is reduced to½
z0(s) = a1(s)z(s) + b1(s)z(s− q), s 6= ξk,

∆z(ξk) = ckz(ξk) + dkz(ξk−j), k ∈ Z. (10)

The equation ½
z0(s) = (a1(s) + b1(s))z(s), s 6= ξk,

∆z(ξk) = (ck + dk)z(ξk), k ∈ Z, (11)

is equivalent to (10) relative to z(s) = z(s − q). Thus, if the function d(s) =
a1(s) + b1(s) is q-periodic and ek = ck + dk > −1 is j-periodic (the delays are the
periods) such that ξk−j = ξk − q and satisfy the conditionZ ω

0
d(s) ds+

X
0≤ξk<ω

ln(1 + ek) = 0,

then, equation (11) has the q-periodic solution

z(s) = c exp

µZ s

0
d(ξ) dξ

¶ Y
0≤ξk<s

(1 + ek).

Consequently, equation (9) has a solution of the form

x(t) = c exp

ÃZ ψ(t)

0
d(s) ds

! Y
0≤θk<ψ(t)

(1 + ek),

possessing the property x(t) = x(u(t)).

Remark 1 The presentations considered above can be extended to impulsive dif-
ferential equations with deviating arguments of the form

x(n)(t) = f(t, x(t), x(t− pi), x(t− qj), . . . ,

x(n)(t− pi), x
(n)(t− qj)), t 6= θk,

∆x(n−1)(θk) = Ik(x(θk), x(θk−ur), x(θk−vq), . . . ,
x(n−1)(θk−ur), x(n−1)(θk−vq)), k ∈ Z.

(12)

Suppose that there exist ki ∈ N, i = 1, . . . ,m, such that pi = kiω for ω > 0 and the
constants qj > 0, j = 1, 2, . . . , s, and there exist jr ∈ N, r = 1, . . . ,m, such that
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ur = jrp for p > 0, the constants vq > 0, q = 1, 2, . . . , s, and θk+p = θk + ω. In this
case, we may consider a functionally equivalent equation as

x(n)(t) = f(x(t), x(t), x(t− qj), . . . ,

x(n)(t), x(n)(t− qj)), t 6= θk,

∆x(n−1)(θk) = Ik(x(θk), x(θk), x(θk−vq), . . . ,
x(n−1)(θk), x(n−1)(θk−vq)), k ∈ Z,

(13)

where functional equivalence is understood in a similar manner.

Remark 2 The definition of functional equivalence, generally speaking, is not pre-
cise. Indeed, if equation (12) is of neutral type, then its periodic solutions may
be n times piecewise differentiable functions. Then, as for equation (13), there is a
possibility of the case when its order turns out to be less than n, consequently, some
of its solutions may remain piecewise differentiable a smaller number of times and
may even be only piecewise continuous. There is also the possibility of the case, for
instance if equation (13) has order n and s = 0, for which all solutions of equation
(13) are n times piecewise differentiable. Consequently, it is impossible to assert
that equations (12) and (13) have in common all periodic solutions of period ω.
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