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Abstract

Neural networks are being used to solve all kinds of problems from a wide
range of disciplines. The topic is highly interdisciplinary in nature, and so it
is extremely difficult to develop an introductory and comprehensive treatise
on the subject in a short manuscript. A brief historical introduction is given
and recent research works are summarized. In addition, we provide an exam-
ple of the study of the stability characteristics of a time-dependent system of
impulsive logistic equations by using discrete modelling.

1 Introduction

Mathematical modelling in neural networks has been based on “neurons” that are
different both from real biological neurons and from the realistic functioning of
simple electronic circuits. Unfortunately, many real-world problems do not come
prepackaged with mathematical equations, and often the equations derived might
not be accurate or suitable. The neuronal model is made up of four basic com-
ponents: an input vector, a set of synaptic weights, summing function with an
activation, or transfer function, and an output [4]—[9], [11]—[13], [15]—[17]. The bias
increases or decreases the net input of the activation function. Throughout history,
scientists have attempted to model physical systems using mathematical equations.
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This approach has been quite successful in some scientific fields, but not in all.
For example, what equations would a doctor use to diagnose an illness and then
prescribe a treatment? How can we tell whether somebody is telling the truth?
These questions have been successfully dealt with by the adoption of “neural net-
works”, or “artificial neural networks”, as they are sometimes referred to, using
machine learning or data mining. See for more details [4]—[6] and reference therein.
McCulloch and Pitts (1943) assumed that a neuron simply counted the number of
active inputs and produced an output after a short delay if the number exceeded
a threshold value in any given time interval. This formulation permitted algebraic
solutions for many network configurations, but omitted several properties consid-
ered important by later researchers. Two major divergences between the model and
biological or physical systems stand out. Real neurons (and real physical devices)
have continuous input-output relations. The original model used two-state thresh-
old “neurons” that followed a stochastic algorithm. Each model neuron i had two
states characterized by the output V 0i or V

1
i which may often be taken as 0 and 1,

respectively. The input of each neuron came from two sources, external inputs Ii
and inputs from other neurons. The total input to neuron i is then

Input to i = Hi =
X
j 6=i

TijVj + Ii,

where Ii are external inputs and Tij can be biologically viewed as a description of
the synaptic interconnection strength from neuron j to neuron i. Real neurons and
real physical circuits have integrative time delays due to capacitance, and the time
evolution of the state of such systems might be represented in a more meaningful
way by a differential equation. Among the most popular models in the literature
are artificial neural networks, which include additive Hopfield neural networks. The
model is described by a set of differential equations with delays, namely, functional
differential equations. For example, recently Zhou Jin et al. [15] studied the follow-
ing form of the functional differential equations

ẋi = −cixi(t) +
nX

j=1

a0ijfj
¡
xj(t)

¢
+

nX
j=1

aτijfj
¡
xj(t− τ ij)

¢
+ ui, i = 1, 2, . . . , n,

or simply in the form

ẋ = −Cx(t) +Af(x(t)) +Aτf(x(t− τ)) + u.

The main objective of the work is to give some sufficient conditions for the existence
(or encoding) and globally exponential stability (associative) of periodic solutions
for periodic delay neural networks without assuming the smoothness, monotonicity
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and unboundedness of the activation function. The model introduced is a gener-
alization of some additive delayed neural networks such as delayed Hopfield neural
networks and delayed cellular neural networks. Such type of models can well sim-
ulate biological neural networks and artificial intelligence systems, from the view
point of reality, it should also naturally take into account evolutionary processes
of the biological systems as well as disturbances of external influence, particularly
under a periodically varying environment.

Delayed neural networks have attracted increasing interest in both theoretical
studies and engineering applications. One of the most investigated and attractive
problems in the dynamic of behaviors of Hopfield neural networks and design of the
delay neural networks, is that of the existence, uniqueness, and global asymptotic
stability of the equilibrium point.

The following system of integro-differential equations as a model for Hopfield
neural networks with continuously distributed delays have been investigated by
many researchers [1]—[3], [11]—[13], [15]—[17] and references therein:

ẋi = −aixi(t) +
nX

j=1

aijgj
¡
xj(t)

¢
+

nX
j=1

bij

Z t

−∞
kij(t− s)gj

¡
xj(s)

¢
ds+ Ii, t ≥ 0,

xi(t) = φi(t), −∞ < t ≤ 0, i = 1, 2, . . . , n.

Existence and uniqueness, and global asymptotic stability of the equilibrium point
of Hopfield neural networks with distributed delays and under different assumptions
have been discussed in detail by the researchers. In particular, a novel method of
obtaining a discrete time dynamical system whose dynamics is inherited from the
continuous time dynamical system has been suggested. Numerical algorithms of
Hopfield type differential equations lead to discrete time dynamical systems and
such discrete time systems should not give rise to any spurious behavior. The non-
linear neural activation functions fi(·), i ∈ Z+, are usually chosen to be continuous
and differentiable nonlinear sigmoid functions satisfying the following conditions:

(a) fi(x)→ ∓1 as x→ ∓∞;

(b) fi(x) is bounded above by 1 and below by −1;

(c) fi(x) = 0 at a unique point x = 0;

(d) f 0i(x) > 0 and f 0i(x)→ 0 as x→ ∓∞;

(e) f 0i(x) has a global maximum value of 1 at the unique point x = 0.
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Some examples of activation functions fi(·) are

fi(x) = tanh(x) =
ex − e−x

ex + e−x
, fi(x) =

1− e−x

1 + e−x
= tanh(x/2),

fi(x) =
2

π
arctan

³π
2
x
´
, fi(x) =

x2

1 + x2
sgn(x),

where sgn(·) is a signum function and all the above nonlinear functions are bounded,
monotonic and nondecreasing functions. It has been shown that the absolute capac-
ity of an associative memory network can be improved by replacing the usual sig-
moid activation functions. There, it seems appropriate that nonmonotonic functions
might be better candidates for neuron activation in designing and implementing an
artificial neural network. Akça, Covachev et al. consider the problem under the
presence of impulses in a series of papers [1]—[3]. The global stability characteristics
of the systems supplemented with impulse conditions in the continuous-time case
have been investigated [1]. The presence of impulses requires some modifications
and the imposing of additional conditions on the systems:

dxi
dt

= −aixi(t) +
mX
j=1

bijfj(xj(t)) + ci, t > 0, t 6= tk,

∆xi(tk) = Ii(xi(tk)), i ∈ {1, . . . ,m}, k = 1, 2, . . . , (1)

where∆x(tk) = x(tk+0)−x(tk−0) are the impulses at moments tk and t1 < t2 < . . .
is a strictly increasing sequence such that lim

k→∞
tk = +∞; xi(t) corresponds to the

membrane potential of the unit i at time t; fj(·) denotes a measure of response or
activation to its incoming potentials; bij denotes the synaptic connection weight of
the unit j on the unit i; the constants ci correspond to the external bias or input
from outside the network to the unit i; the coefficient ai is the rate with which the
unit self-regulates or resets its potential when isolated from other units and inputs.

The system (1) can be generalized by inserting time delays in neural networks.
Then, we will consider the following system

dxi
dt

= −aixi(t) +
mX
j=1

bijfj(xj(t− τ ij)) + ci, t > 0, t 6= tk, (2)

in which i ∈ {1, 2, . . . ,m} and τ ij ≥ 0 corresponds to the transmission delay for
i, j ∈ {1, 2, . . . ,m}. The impulsive conditions are

∆xi(t) = Ii(xi(t)), t = tk, k = 1, 2, . . .
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This system is supplemented with initial functions of the form

xi(s) = ψi(s), s ∈ [−τ , 0], i ∈ {1, . . . ,m}, τ = max
i,j∈{1,...,m}

{τ ij},

where ψi(s) is continuous for s ∈ [−τ , 0].
For an integro-differential equation an impulsive condition including both the

functional value and its integral also seems natural. Therefore the impulse condi-
tions can be introduced in the form

∆xi(tk) = Ii(xi(tk)) = Bikxi(tk) +

Z tk

tk−1
cik(s)xi(s) ds+ αik, k ∈ Z+,

where tk > t0 = 0 and cik : [tk−1, tk] → R are measurable functions, essentially
bounded on the respective interval, Bik and αik are some real constants.

A more satisfactory hypothesis is that the time delays are continuously dis-
tributed over a certain duration of time. System (2) is modified to a system of
integro-differential equations

dxi(t)

dt
= −aixi(t) +

mX
j=1

bijfj

µZ t

−∞
Kij(t− s)xj(s) ds

¶
+ ci,

i = 1, 2, . . . ,m, t > 0,

or

dxi(t)

dt
= −aixi(t) +

mX
j=1

bijfj

µZ ∞

0
Kij(s)xj(t− s) ds

¶
+ ci,

i = 1, 2, . . . ,m, t > 0, (3)

where for i, j ∈ {1, . . . ,m} the delay kernels Kij(s) are assumed to satisfy the
conditions:

• Kij : [0,∞)→ [0,∞) are bounded and continuous.

•
Z ∞

0
Kij(s)ds = 1.

• There exists a positive number µ such that
Z ∞

0
Kij(s)e

µsds <∞.

The investigation of the stability of the respective discrete systems with impulse
effect has been studied in detail in [2].
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We rewrite the equation (1) in the form

d

ds
(xi(s)e

ais) = eais

 mX
j=1

bijfj(xj(n)) + ci

 ,

i = 1,m, s ∈ [nh, (n+ 1)h),
and integrate it over the interval [nh, t] for t < (n+ 1)h to obtain

xi(t)e
ait − xi(n)e

ainh =
eait − eainh

ai

 mX
j=1

bijfj(xj(n)) + cj

 , i = 1,m.

In the last equality letting t→ (n+ 1)h we obtain

xi(n+ 1) = e−aihxi(n) +
1− e−aih

ai

 mX
j=1

bijfj(xj(n)) + ci

 , i = 1,m.

We take this equation for n 6= nk = [tk/h], and approximate the impulsive condi-
tions by

xi(nk + 1)− xi(nk) = Ii(xi(nk)), i = 1,m, k ∈ Z+.
Thus we obtain the discrete-time analogue of the system (1).

The discrete-time analogue of (2) is obtained in a similar way:

xi(n+ 1) = e−aihxi(n) + φi(h)
mX
j=1

bijfj(xj(n− κij))

+φi(h)ci, i = 1,m, n ∈ Z+0 \ {n1, n2, . . .},
where κij = [τ ij/h], φi(h) = (1− e−aih)/ai, with initial condition

xi(c) = ψi(c), i = 1,m, c = −κ, 0, κ = max
i,j∈{1,...,m}

{κij}.

Finally, the discrete-time analogue of (3) is obtained in the same manner:

xi(n+ 1) = e−aihxi(n) + φi(h)
nX

j=1

bijfi

 ∞X
p=1

Kij(p)xj(n− p)


+ φi(h)ci, i = 1,m, n ∈ Z+0 \ {n1, n2, . . .}.

and it is supplemented with initial values of the form

xi(r) = ψi(r), r ∈ Z−0 ,
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and the sequence {ψi(r)}0r=−∞ is bounded for all i = 1,m. The impulsive conditions
are approximated by

xi(nk + 1)− xi(nk) =

nkX
c=nk−1+1

Bikcxi(c) + αik, i = 1,m, k ∈ Z+,

where, for convenience, n0 = −1 and the constants Bikc satisfy additional condi-
tions. The study [2] is devoted to the investigation of the stability of the discrete
time analogue of impulsive systems.

2 Artificial neural networks

An artificial neural network (ANN) is an information processing paradigm that is in-
spired by the way biological nervous systems, such as the brain, process information.
The key element of this paradigm is the novel structure of the information process-
ing system. It is composed of a large number of highly interconnected processing
elements (neurons) working in unison to solve specific problems. ANNs, like people,
learn by example. An ANN is configured for a specific application, such as pattern
recognition or data classification, through a learning process. Learning in biological
systems involves adjustments to the synaptic connections that exist between the
neurons. This is true of ANNs as well.

Neural network simulations appear to be a recent development. However, this
field was established before the advent of computers, and has survived at least one
major setback and several eras. Many important advances have been boosted by the
use of inexpensive computer emulations. Following an initial period of enthusiasm,
the field survived a period of frustration and disrepute.

The first artificial neuron was produced in 1943 by the neurophysiologist Warren
McCulloch and the logician Walter Pits. But the technology available at that time
did not allow them to do too much. Neural networks process information in a
similar way the human brain does. The network is composed of a large number of
highly interconnected processing elements (neurons) working in parallel to solve a
specific problem. Neural networks learn by example. Much is still unknown about
how the brain trains itself to process information, so theories abound.

In the human brain, a typical neuron collects signals from others through a
host of fine structures called dendrites. The neuron sends out spikes of electrical
activity through a long, thin stand known as an axon, which splits into thousands
of branches. At the end of each branch, a structure called a synapse converts the
activity from the axon into electrical effects that inhibit or excite activity from the
axon into electrical effects that inhibit or excite activity in the connected neurons
(Figures 1, 2). When a neuron receives excitatory input that is sufficiently large
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compared with its inhibitory input, it sends a spike of electrical activity down its
axon. Learning occurs by changing the effectiveness of the synapses so that the
influence of one neuron on another changes.

An artificial neuron is a device with many inputs and one output (Figure 3).
The neuron has two modes of operation; the training mode and the using mode.
In the training mode, the neuron can be trained to fire (or not), for particular
input patterns. In the using mode, when a taught input pattern is detected at the
input, its associated output becomes the current output. If the input pattern does
not belong in the taught list of input patterns, the firing rule is used to determine
whether to fire or not.

An important application of neural networks is pattern recognition. Pattern
recognition can be implemented by using a feed-forward (Figure 4) neural network
that has been trained accordingly. During training, the network is trained to asso-
ciate outputs with input patterns. When the network is used, it identifies the input
pattern and tries to output the associated output pattern. The power of neural
networks comes to life when a pattern that has no output associated with it, is
given as an input. In this case, the network gives the output that corresponds to a
taught input pattern that is least different from the given pattern [4]—[6].

The above neuron does not do anything that conventional computers do not al-
ready do. A more sophisticated neuron (Figure 5) is the McCulloch and Pitts model
(MCP). The difference from the previous model is that the inputs are ‘weighted’,
the effect that each input has at decision making is dependent on the weight of the
particular input. The weight of an input is a number which when multiplied with
the input gives the weighted input. These weighted inputs are then added together
and if they exceed a pre-set threshold value, the neuron fires. In any other case the
neuron does not fire. In mathematical terms, the neuron fires if and only if

X1W1 +X2W2 +X3W3 + · · · > T,

where wi, i = 1, 2, . . ., are weights, xi, i = 1, 2, . . ., inputs, and T a threshold. The
addition of input weights and of the threshold makes this neuron a very flexible
andpowerful one. The MCP neuron has the ability to adapt to a particular situation
by changing its weights and/or threshold. Various algorithms exist that cause
the neuron to ‘adapt’; the most used ones are the Delta rule and the back error
propagation. The former is used in feed-forward networks and the latter in feedback
networks.

The most influential work on neural nets in the 60’s went under the heading of
‘perceptrons’, a term coined by Frank Rosenblatt. The perceptron (Figure 6) turns
out to be an MCP model (neuron with weighted inputs) with some additional, fixed,
pre-processing.
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Every neural network possesses knowledge which is contained in the values of the
connections weights. Modifying the knowledge stored in the network as a function
of experience implies a learning rule for changing the values of the weights (Figure
7).

Information is stored in the weight matrix W of a neural network. Learning is
the determination of the weights. We can distinguish two major categories of neural
networks:

• Fixed networks in which the weights cannot be changed, i.e., dwdt = 0. In such
networks, the weights are fixed a priori according to the problem to solve.

• Adaptive networks which are able to change their weights, i.e., dw
dt 6= 0.

The behavior of an ANN depends on both the weights and the input-output
function (transfer function) that is specified for the units. We denote by wij the
weight of the connection from unit ui to unit uj . It is then convenient to represent
the pattern of connectivity in the network by a weight matrix w whose elements
are the weights wij . Two types of connection are usually distinguished: excitatory
and inhibitory. A positive weight represents an excitatory connection whereas a
negative weight represents an inhibitory connection. The pattern of connectivity
characterizes the architecture of the network.

This function typically falls into one of three categories:

• Linear (or ramp), the output activity is proportional to the total weighted
output

xj =
X
i

yiwij ,

where yi is the activity level of the i-th unit in the previous layer and wij is
the weight of the connection between the i-th and the j-th unit.

• Threshold, the output is set at one of two levels, depending on whether the
total input is greater than or less than some threshold value.

• In the form of sigmoid, the output varies continuously but not linearly as the
input changes, i.e.,

yj =
1

1 + e−xj
.

Sigmoid units bear a greater resemblance to real neurons than do linear or threshold
units, but all three must be considered rough approximations.
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To make a neural network that performs some specific task, we must choose how
the units are connected to one another (Figure 8) and we must set the weights on
the connections appropriately. The connections determine whether it is possible for
one unit to influence another. The weights specify the strength of the influence.

Once the activities of all output units have been determined, the network com-
putes the error E which is defined by the expression

E =
1

2

X
i

(yi − di)
2 ,

where yi is the activity level of the i-th unit in the top layer and di is the desired
output of the i-th unit. Neural networks have wide applicability to real world
business problems. In fact, they have already been successfully applied in many
industries. Since neural networks are best at identifying patterns or trends in data,
they are well suited for prediction or forecasting needs including: sales forecasting,
industrial process control, customer research, data validation, risk management,
target marketing.

ANN are also used in the following specific paradigms: recognition of speak-
ers in communications; diagnosis of hepatitis; recovery of telecommunications from
faulty software; interpretation of multi-meaning Chinese words; undersea mine de-
tection; texture analysis; three-dimensional object recognition; hand-written word
recognition; and facial recognition.

3 Example: an impulsive logistic equation

Consider the nonautonomous logistic equation

dx

dt
= r(t)x(t)

µ
1− x(t)

K(t)

¶
, t > 0, t 6= τk, (4)

∆x(t) = Ik(x(t)), t = τk, k = 1, 2, . . . , (5)

in which r(t) is nonnegative and K(t) is a strictly positive continuous function, and
Ik are bounded operators. In the real evolutionary processes of the population, the
perturbation or the influence from outside occurs “instantly” as impulses, and not
continuously. The duration of these perturbations is negligible compared to the
duration of the whole process, more details about the theory of impulsive differen-
tial equations and applications see [10, 14] and references therein. Also impulsive
perturbations (harvest, taking out, hunting, fishing, etc.) are more practical and
realistic compared to the any kind of continuous harvest. For instance, a fisherman
can not fish 24 hours a day and furthermore, the seasons also determine the fishing
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period. Similar considerations are applicable for hunting and taking away a huge
part of any biomass. The logistic equation (4) has been intensively studied by vari-
ous researchers [1, 2, 4] and [5, 6], considering existence of the solutions, asymptotic
properties of the solutions, sufficient conditions for the oscillation of the solutions
and so on.

As in §1 we obtain the discrete counterpart of (5), (6):

x(n+ 1) =
er(n)hx(n)

1 +
³
er(n)h−1
K(n)

´
x(n)

, n 6= mk, (6)

x(mk + 1) = x(mk) + Ik(x(mk)), k = 1, 2, . . .

Theorem 1 Let the following conditions hold:

0 ≤ inf
n∈Z+

r(n), R = sup
n∈Z+

r(n) <∞, 0 < K∗ ≤ inf
n∈Z+

K(n),

sup
n∈Z+

K(n) <∞ and Ik(x(mk)) = cx(mk),

where c > 0. Then for h > 0 satisfying the inequality h ≤ ln(1 + c)/R a solution
x(n) of (6) corresponding to x(0) > 0 satisfies the inequality

1

x(n)
≤ 1

x(0)
e

−
n−1X
i=0

r(i)h

+
nX

j=1

Ã
1− e−r(n−j)h

K(n− j)

!
e

−
j−1X
c=1

r(n− c)h

.

Theorem 2 Let all assumptions of Theorem 1 hold and suppose further that there
exists a number r̂ > 0 such that

lim
m→∞

1

m


mX
j=1

r(n− j)

 = r̂, m ∈ Z+, uniformly on n ∈ Z.

Then the solution x(n) of the system (6) tends to x∗(n) as n→∞, where x∗(n) is
given by

x∗(n) =


∞X
j=1

Ã
1− e−r(n−j)h

K(n− j)

!
e

−
j−1X
c=1

r(n− c)h


−1

in the sense that x(n)− x∗(n)→ 0 as n→∞.
The proofs of Theorem 1 and Theorem 2 will be given elsewhere.
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