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Abstract
The objective of this work is the study of the asymptotic behavior of the

solution, when t→ +∞, of a class of parabolic equations. We show that if the
initial condition is not null, the solution is exactly exponential when t→ +∞
and the decrease rate is characterized by an element of the operator spectrum.

1 Introduction

It is well known that the solutions of the nonlinear equations of the type(
ut +Au+ f(u) = 0,

u(0) = u0,
(1.1)

(A is an unbounded operator of the domain D(A), and f is a nonlinear operator) in
Ω×R (Ω open bounded) associated with conditions at the edges are usually regular
enough and convergent towards their state of equilibrium when t→ +∞.

The objective of this work is to show that this convergence towards u ≡ 0 is
exactly of the exponential type and the rate of this decrease is characterized by an
eigenvalue of the operator A.

More precisely, we study the limit of the quotient
R |A1/2u|2 dxR |u|2 dx , denoted kuk2

|u|2 , and
we show that it is an eigenvalue of the operator A, we deduce that there exists an
eigensubspace such that u(x,t)

|u(x,t)| is found concentrated under this subspace, and the
solution u(t) behaves exactly like the function t 7→ e−Λt when t→ +∞ (Λ ∈ σ(A)).

2 Notations and recalls of certain results

Let V and H be two separable Hilbert spaces such that:

V /→ H with compact injection, (2.1)
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V is dense in H. (2.2)

We denote by k · k and | · | the corresponding norms.
Consider the unbounded operator A with a range in H:

D(A) = {u ∈ V, Au ∈ H} . (2.3)

Supplying D(A) with the graph norm, A is then an isomorphism of D(A) in H,
so there exists a sequence of eigenvalues of A

0 < λ1 < λ2 < · · · , (2.4)

each with a finite multiplicity.
On the other hand, if Rj denotes the orthogonal projection onto the associated

eigenspaces at j, then

RjRk = 0 if i 6= j, R1 ⊕R2 ⊕ · · · = I. (2.5)

We denote by
0 < Λ1 < Λ2 < · · · < Λj < · · · (2.6)

the sequence of eigenvalues of multiplicity mk, and by {S(t)}t≥0 the nonlinear semi-
group defined by

S(t) : V → V, u0 7→ S(t)u0. (2.7)

Consider the problem given by

(P )

(
ut +Au+ f(u) = 0,

u(0) = u0,
(2.8)

A is an unbounded positive self-adjoint operator of the domain D(A), f(u) is a
nonlinear operator.

From [3], we have the global existence results of uniform estimations in time as
well as the asymptotic behavior when t→ +∞.

Indeed, if u0 ∈ V and if f satisfies
(i) f continuous,
(ii) (f(u)− f(v), u− v) + λ |u− v|2 ≥ 0 ∀u, v ∈ V, λ ∈ R,
(iii) ∃θ ∈ [0, 2[ , ∀B bounded in H,

|f(u)| ≤ CB kuk2−θ |Au|θ/2 ∀u, v ∈ D(A), (2.9)

the problem given by the system of equations (2.8) possesses a unique solution u
that satisfies

u ∈ Cb(R+, V ) ∩ L2(0,∞;D(A)), (2.10)
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ut ∈ L2(0,∞;H) (2.11)

(Cb = C0 ∩ L∞).
On the other hand, when t→ +∞, the solution u tends to its equilibrium state

exponentially, and we have:

there exists a constant c0 : kuk ≤ C0e
−λ(t−t0) ∀t ≥ t0, t0 ≥ 0. (2.12)

3 The behavior of the quotient kS(t)u0k2
|S(t)u0|2 when t→ +∞

For u0 ∈ V, u0 6= 0, the quotient

λ(t) =
kS(t)u0k2
|S(t)u0|2

(3.1)

is defined for t ≥ 0. The behavior of λ(t) is given by the following theorem.

Theorem 3.1
lim

t→+∞λ(t) = Λ(u0), (3.2)

where Λ(u0) is the eigenvalue of the operator A.

Proof. If λ(t) is differentiated with respect to time, writing

1

2

d

dt
(λ(t)) =

µ
Au,

du

dt

¶ |u|2
|u|4 −

µ
du

dt
, λu

¶ |u|2
|u|4 , (3.3)

i.e.,
1

2

d

dt
(λ(t)) =

1

|u|2
µ
Au− λu,

du

dt

¶
, (3.4)

or du
dt = −(Au− f(u)), and (3.4) will be

1

2

d

dt
(λ(t)) =

1

|u|2 (Au− λu,Au+ f(u)). (3.5)

However, we have (Au− λu, λu) = (Au− kuk2
|u|2 · u,

kuk2
|u|2 · u) = 0.

So we can write using (3.5):

1

2

d

dt
(λ(t)) = − 1

|u|2 (Au− λu, Au− λu) + (Au− λu, f(u)). (3.6)
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Then by putting v(t) = u(t)
|u(t)| ,

1

2

d

dt
(λ(t)) + |(A− λ)v|2 = −((A− λ)v,

f(u)

|u| ). (3.7)

Majorizing the term on the right-hand side and applying the inequality of Young,
we obtain

d

dt
(λ(t)) + |(A− λ)v|2 ≤ |f(u)|

2

|u|2 . (3.8)

Taking into account |f(u)| ≤ η(u) kuk with η(u) =°(e−αt), α > 0, we have :

d

dt
(λ(t)) + |(A− λ)v|2 ≤ c1e

−αtλ(t), α > 0. (3.9)

Omitting the term |(A− λ)v|2 in (3.9), we get
d

dt
(λ(t)) ≤ c1e

−αtλ(t), (3.10)

which will be integrated:

Λ1 ≤ λ(t) ≤ λ(t0)e
c1

tR
t0

e−αs ds
, t > t0. (3.11)

Taking the upper limit as t→ +∞, it will be

Λ1 ≤ lim sup
t→+∞

λ(t) = λ(t0)e
c1

+∞R
t0

e−αs ds
< +∞, (3.12)

then the lower limit as t→ +∞,
Λ1 ≤ lim sup

t→+∞
λ(t) ≤ lim inf

t→+∞ λ(t) < +∞. (3.13)

We deduce then that λ(t) converges toward a limit Λ(u0). Moreover, we have:

λ(t) ≥ Λ(u0)e
−c1

+∞R
t0

e−αs ds
. (3.14)

To show that Λ(u0) ∈ σ(A) = {Λ1,Λ2, . . .}, we take again and integrate the
inequality (3.9), it becomes then

λ(t)− λ(t0) +

tZ
t0

|(A− λ)v|2 (s) ds ≤ sup
t≥t0

λ(t)

tZ
t0

c1e
−αs ds, α > 0. (3.15)
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It results from it that
|(A− λ)v| ∈ L2(t0,∞). (3.16)

We then deduce that there exists a sequence tj → +∞ such that

|(A− λ)(tj)v(tj)|→ 0 when tj → +∞. (3.17)

Thus,
|(A− Λ(u0))v(tj)|→ 0 when tj → +∞.

The sequence |(Av(tj))| is bounded, by an A−1 capacity, we are sure of the
existence of a subsequence, denoted by (tj), such that

v(tj)→ v in H strongly and in V weakly. (3.18)

It results from it that

Av(tj) = (A−λ(tj))(v(tj))+(λ(tj)−Λ(u0))(v(tj))+Λ(u0)(v(tj))→ Λ(u0)v, (3.19)

with v ∈ D(A) (A is maximum accretive, so closed).
Moreover, |v(tj)| = 1. Thus |v| = 1, it results from (3.17) and (3.20):

Av = Λv (3.20)

(Thus λ is an eigenvalue of A).

Corollary 3.1

lim
t→+∞

log ku(t)k
t

= lim
t→+∞

|log u(t)|
t

= −Λ(u0). (3.21)

Let us use the equation

1

2

d

dt
|u|2 + kuk2 + (f(u), u) = 0. (3.22)

According to Theorem 3.1, we deduce that there exists tε (ε > 0) such that
∀t > tε we have

−ε+ Λ(u0) ≤ ku(t)k
2

|u(t)|2 ≤ Λ(u0) + ε. (3.23)

From (3.23) and (3.22), taking into account |f(u)| ≤ η(t) kuk , η(t) =°(e−αt),
α > 0, it follows that©−c1e−αt − 2(ε+ Λ(u0))ª |u|2 ≤ d

dt
|u|2 ≤ ©c1e−αt − 2(Λ(u0) + ε)

ª |u|2 , (3.24)
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and from it, that

−(ε1 + Λ(u0)) ≤ log |u(t)|
t

≤ (ε1 − Λ(u0)), ∀t > tε, (3.25)

where

lim
t→+∞

log |u(t)|
t

= −Λ(u0), (3.26)

and since ku(t)k
|u(t)| is bounded, thus we have

lim
t→+∞

log ku(t)k
t

= −Λ(u0). (3.27)

4 The behavior of S(t)u0 when t→ +∞
We recall that for the eigenvalue λ of the operatorA, we denote byRλ the orthogonal
projection onto the eigenspace associated with λ:

Rλω =
X
λj=λ

(ω,ωj)ωj . (4.1)

As well as if λm < λ < λm+1 and ΛM < λ < ΛM+1, then

Rλ = PM − Pm (4.2)

(Where Pm is an orthogonal projection).
The following propositions show that the solution u behaves asymptotically like

RΛu.

Proposition 4.1

lim
t→∞

°°°°(I −RΛ(u0))
S(t)u0
|S(t)u0|

°°°° = lim
t→∞

¯̄̄̄
(I −RΛ(u0))

S(t)u0
|S(t)u0|

¯̄̄̄
= 0. (4.3)

We start by establishing a lemma that specifies Corollary 3.1.

Lemma 4.1 There exist two positive constants c1 and c2 such that

|u(t)| = c1e
−Λ(u0)(t−t0) ∀t ≥ t0, (4.4)

ku(t)k = c2e
−Λ(u0)(t−t0) ∀t ≥ t0. (4.5)
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Proof. Since ku(t)k
|u(t)| is bounded, it is sufficient to prove (4.4).

Suppose the inequality

1

2

d

dt
|u|2 + kuk2 ≤ η(t)λ1/2 |u|2 . (4.6)

By virtue of kuk2 ≥ λ(t) |u|2 and (4.6) we obtain
d

dt
log(|u|2 e2Λt) ≤ 2ηλ1/2 + 2(λ− Λ). (4.7)

From (3.2) and (4.7) there follows (4.4).
Proof of Proposition 4.1. We start by establishing an evolution equation for

v(t) = S(t)u0
|S(t)u0| =

u(t)
|u(t)| ,

dv

dt
=

1

|u(t)|
du

dt
− 1

|u(t)|2
d

dt
|u(t)| · u, (4.8)

but 2(dudt , u) = 2 |u| ddt |u| = d
dt |u|2 ; du

dt = −(Au+ f(u)) and (4.8) takes the form

dv

dt
+ (A− λ)v =

1

|u(t)|2 (f(u), u) · v −
f(u)

|u(t)| . (4.9)

We put

ρ =

¯̄̄̄
1

|u(t)|2 (f(u), u) · v −
f(u)

|u(t)|
¯̄̄̄
. (4.10)

We deduce from the estimation of f(u) and of the bounded λ(t):

ρ ≤ |f(u)||u|2 kuk |v|+ f(u)

|u| ≤ supλ(t)c1e
−αt, α > 0, (4.11)

i.e.,
ρ ≤ c5e

−αt, α > 0.

We denote q = (I − PΛ)v, thus if we apply (I − PΛ) to (4.9) and we take the
scalar product in H of the results by Aq, we have, using (4.10),

1

2

d

dt
kqk2 + |Aq|2 − λ(t) kqk2 ≤ ρ |Aq| . (4.12)

Applying the inequality 2ρ |Aq| ≤ 2ε |Aq|2 + ρ2

2ε (ε > 0), we obtain

1

2

d

dt
kqk2 + 2(1− ε) |Aq|2 − 2λ(t) kqk2 ≤ c6e

−αt, α > 0. (4.13)
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Denoting by Λ0 > Λ the first eigenvalue that is strictly greater than Λ, δ =
Λ0 − Λ > 0, and since |Aq|2 ≥ Λ0 kqk2, we deduce from (4.13)

d

dt
kqk2 + 2 £(1− ε)Λ0 − Λ¤ kqk2 ≤ c6e

−αt, α > 0. (4.14)

Choosing ε = δ
2Λ0 , (4.14) will become

d

dt
kqk2 + δ kqk2 ≤ c6e

−αt, α > 0, (4.15)

that will be integrated:

kq(t)k2 ≤ kq(t0)k2 e−δ(t−t0) + e−δ
tZ

t0

e(α−δ)s ds. (4.16)

We deduce then

kq(t)k = k(I − PΛ)vk→ 0 as t→ +∞, (4.17)

+∞Z
0

kq(t)k2 dt < +∞. (4.18)

On the other hand, denoting Ψ(t) = PΛ00 , where Λ00 < Λ is the first eigenvalue
of A strictly smaller than Λ, δ0 = Λ−Λ00 > 0, the scalar product of PΛ00 applied to
(4.9) by Ψ(t) will be written as

1

2

d

dt
|Ψ|2 + kΨk2 − λ(t) |Ψ|2 ≥ −ρ |Ψ|2 . (4.19)

Applying the inequality of Young to the right-hand side, (4.19) becomes, using
also kΨk2 ≥ Λ00 |Ψ|2 :

d

dt
|Ψ|2 ≥ (2λ(t)− 2(1 + ε0)Λ00) |Ψ|2 − c7e

−αt, (4.20)

or, according to λ(t)→ Λ(u0) as t→ +∞, we can write for tÀ 1

d

dt
|Ψ|2 ≥ 2(Λ− (1 + ε0)Λ00) |Ψ|2 − c7e

−αt. (4.21)

Choosing ε0 = δ0
2Λ00 , (4.21) will be written as

d

dt
|Ψ|2 ≥ δ0 |Ψ|2 − c7e

−αt, (4.22)
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that will be integrated:

|Ψ|2 + eδ
0t

(δ0 + α)
(e−(α−δ

0)t0 − e−(α−δ
0)t) ≥ |Ψ(t0)|2 eδ0(t−t0). (4.23)

Then, multiplying (4.23) by e−δ
0(t−t0), for t→ +∞ we obtain

|Ψ(t0)| ≤ c8e
−δ0t0 , t0 ≥ 0. (4.24)

We deduce from (4.24):

|Ψ(t)| = |PΛ00v(t)|→ 0 as t→ +∞, (4.25)

+∞Z
0

|PΛ00v|2 (s) ds < +∞. (4.26)

Since (I −RΛ)v = PΛ00v+ (I − PΛ)v, from (4.17) and (4.25) there results (4.3).

Corollary 4.1
+∞Z
0

k(I −RΛ)vk (s) ds < +∞. (4.27)

Proof. (4.27) results from (4.18) and (4.26).
The following corollary makes precise the convergence of kv(t)k2 towards Λ(u0).

Corollary 4.2
+∞Z
0

|λ(t)− Λ(u0)| dt < +∞. (4.28)

Proof. We note that |λ− Λ(u0)| ≤ (1 + 1
Λ1
) k(I −RΛ)vk2, thus from (4.27) we

deduce (4.28).

Theorem 4.1 limt→∞ eΛ(u0)t |S(t)u0| exists, is finite and not null.

More precisely: eΛ(u0)tS(t)u0 converges in H and V towards the eigenvector Λ(u0)
of A associated with Λ(u0).

Proof of Theorem 4.1. Apllying RΛ to the equation du
dt + Au + f(u) = 0, it

becomes
d

dt
(eΛtRΛu(t))e

ΛtRΛf(u) = 0, (4.29)
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that will be integrated:

eΛtRΛu(t)− eΛsRΛu(s) = −
tZ

s

eΛσRΛf(u(σ)) dσ, (4.30)

but |f(u)| ≤ c9e
−(Λ+α)t according to (4.5) and then¯̄̄̄

¯̄
tZ

s

eΛσRΛf(u(σ)) dσ

¯̄̄̄
¯̄ ≤ c1

tZ
s

e−ασ dσ ≤ c1

+∞Z
s

e−ασ dσ < +∞. (4.31)

Consequently, the integral on the right-hand side of (4.30) is convergent and eΛtRΛu(t)
converges.

If limt→+∞ eΛtRΛu(t) = UΛ = 0, then the equation (4.30) will be:

eΛtRΛu(t) =

+∞Z
t

eΛσRΛf(u(σ)) dσ, (4.32)

and since |f(u)| ≤ c9e
−(Λ+α)t, α > 0, we deduce that

|RΛu(t)| ≤ c10e
−(Λ+α)t, (4.33)

but (4.33) contradicts Corollary 3.1, since according to Proposition 4.1 we have
|RΛu(t)| is equivalent to c |u(t)| when t → ∞; consequently, the limit UΛ(u0) 6= 0,
and we have

lim
t→+∞ eΛtRΛu(t) = UΛ 6= 0. (4.34)

We simply verify that UΛ is an eigenvalue of the operator A.
Because of Proposition 4.1, we deduce that RΛu(t) = u(t) + ε(t)u(t), where

ε(t)→ 0 (t→ +∞) and we obtain

lim
t→+∞ eΛtu(t) = UΛ 6= 0, (4.35)

which leads to the proof of Theorem 4.1.

Remark 4.1 Theorem 4.1 proves that for t → +∞, |u(t)| = °(e−µt) ∀µ > 0, so
u ≡ 0.
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