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Abstract

The objective of this work is the study of the asymptotic behavior of the
solution, when t — 400, of a class of parabolic equations. We show that if the
initial condition is not null, the solution is exactly exponential when ¢t — +oo
and the decrease rate is characterized by an element of the operator spectrum.

1 Introduction

It is well known that the solutions of the nonlinear equations of the type

{ut—l—Au—l—f(u):O,

o(0) — (1.1)

(A is an unbounded operator of the domain D(A), and f is a nonlinear operator) in
QxR (2 open bounded) associated with conditions at the edges are usually regular
enough and convergent towards their state of equilibrium when ¢ — +oc.

The objective of this work is to show that this convergence towards u = 0 is
exactly of the exponential type and the rate of this decrease is characterized by an

eigenvalue of the operator A.

f|A1/2u|2dz wll?

T TeEdr , denoted Pk and
we show that it is an eigenvalue of the operator A, we deduce that there exists an

eigensubspace such that ﬁgig' is found concentrated under this subspace, and the

solution u(t) behaves exactly like the function ¢ — e~ when t — 400 (A € o(A)).

More precisely, we study the limit of the quotient

2 Notations and recalls of certain results

Let V and H be two separable Hilbert spaces such that:

V < H with compact injection, (2.1)
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V is dense in H. (2.2)

We denote by || - || and | - | the corresponding norms.
Consider the unbounded operator A with a range in H:

D(A) ={ueV, Auc H}. (2.3)

Supplying D(A) with the graph norm, A is then an isomorphism of D(A) in H,
so there exists a sequence of eigenvalues of A

O< <A<, (2.4)

each with a finite multiplicity.
On the other hand, if R; denotes the orthogonal projection onto the associated
eigenspaces at j, then

RijZOifi#j, RI®Ryp---=1. (2.5)

We denote by
0<A1<A2<"'<Aj<"' (26)

the sequence of eigenvalues of multiplicity my, and by {S(¢)},5, the nonlinear semi-
group defined by
S(t): V-V, wuy— S(t)uo. (2.7)

Consider the problem given by

P {ut+Au+f(u>=0,

o(0) (2.8)

A is an unbounded positive self-adjoint operator of the domain D(A), f(u) is a
nonlinear operator.

From [3], we have the global existence results of uniform estimations in time as
well as the asymptotic behavior when t — +o0.

Indeed, if ug € V' and if f satisfies

(1) f continuous,

(i1)  (f(u) = fv),u—v)+A|u—v]> >0 Yu,v €V, €R,

(19t) 36 €[0,2[, VB bounded in H,

f ()] < Cp Jul*~" |Au? Yu,0 € D(A), (2.9)

the problem given by the system of equations (2.8) possesses a unique solution u
that satisfies
u € Cy(Ry, V)N L%(0,00; D(A)), (2.10)
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up € L?(0,00; H) (2.11)
(Cp = C° N L>).

On the other hand, when ¢ — 400, the solution u tends to its equilibrium state
exponentially, and we have:

there exists a constant cg : |Ju] < Coe ™ 710) vt > ¢4, t > 0. (2.12)
2
3 The behavior of the quotient % when ¢ — +o00
0

For ug € V, ug # 0, the quotient

2
)\(t) _ ||S<t)u0||2 (3'1)
|5 (t)uol
is defined for ¢ > 0. The behavior of A(t) is given by the following theorem.
Theorem 3.1
Jim (1) = Au). (3.2)
where A(ug) is the eigenvalue of the operator A.
Proof. If A(t) is differentiated with respect to time, writing
1d du |ul® du |ul?
SZ@) = (Au, ) L (28 ) BL .
) = (4 ) 15— () s (33
i.e.,
1d 1 du
or & = —(Au — f(u)), and (3.4) will be
1d 1
However, we have (Au — A\u, A\u) = (Au — % -, %Li -u) = 0.
So we can write using (3.5):
1d 1
Ea()\(t)) = —W(Au —Au, Au— Au) + (Au — Au, f(u)). (3.6)
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Then by putting v(t) = |Z(t)l’

1d f(w)
37 (A1) + (A= A2 = —((A= Ao, ==). (3.7)

Majorizing the term on the right-hand side and applying the inequality of Young,
we obtain

d 2 _ fw)?
GO0+ 1 -l < L (3.5)
Taking into account |f(u)| < n(u) ||ul| with n(u) = O(e™), a > 0, we have :
%()\(t)) + (A= Mol < cre”™(t), a > 0. (3.9)

Omitting the term |(A — A)v|? in (3.9), we get

d
E(/\(t)) < cre” M\(t), (3.10)
which will be integrated:
t
c1 [ e *5ds
A < A(t) < A(to)e "o , t>to. (3.11)

Taking the upper limit as t — 400, it will be

—+oo
a1 [ e *ds
A <limsup A\(¢) = A(tg)e ‘o < 400, (3.12)
t—-+o00
then the lower limit as ¢ — +o00,
A <limsup A(t) < ltimjnf)\(t) < +o00. (3.13)
t——+o00 —Too

We deduce then that A(t) converges toward a limit A(ug). Moreover, we have:

too
—c1 [ e"%%ds

A(t) > Aug)e o . (3.14)

To show that A(ug) € 0(A) = {A1,As,...}, we take again and integrate the
inequality (3.9), it becomes then

t

¢
A(t) — Mto) + / (A= A)vf* (s) ds < sup A(t) /cleo‘s ds, a> 0. (3.15)
t>to
to to
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It results from it that
(A — Nw| € L*(tg, 00). (3.16)

We then deduce that there exists a sequence t; — +00 such that
[(A—N)(tj)v(tj)] — 0 when ¢; — +o0. (3.17)

Thus,
|(A — A(ug))v(t;)] — 0 when t; — +o0.

The sequence |(Av(t;))| is bounded, by an A~! capacity, we are sure of the
existence of a subsequence, denoted by (t;), such that

v(t;) =0 in H strongly and in V' weakly. (3.18)
It results from it that
Au(tj) = (A=A(t;)) (v(t;))+ (A(E;) = Aluo)) (v(t;)) +Aluo) (v(t;)) — Aluo)v, (3.19)

with 7 € D(A) (A is maximum accretive, so closed).
Moreover, |v(tj)| = 1. Thus [7] = 1, it results from (3.17) and (3.20):

AT = AT (3.20)
(Thus X is an eigenvalue of A).
Corollary 3.1
1 1
1 (O] T TIO] Y (3.21)
t——+o00 t t—+o00 t
Let us use the equation
2l + [l + (), w) = 0 (322)
2dt T ’

According to Theorem 3.1, we deduce that there exists t. (¢ > 0) such that
Vt > t. we have

—€ + A(UO) < < A(UO) + €. (3.23)

From (3.23) and (3.22), taking into account |f(u)| < n(t) ||ul, n(t) = O(e™*),
a > 0, it follows that

{—cre7™ —2(e + A(ug)) } luf® < % luf* < {ere™" —2(A(ug) +¢)} >, (3.24)
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and from it, that

1
~(e1 + Alug)) < M < (61— Alug)), ¥t >t (3.25)
where | | (t)|
. og |u
i 20

and since % is bounded, thus we have

_ loglult
Jim w — —Alup). (3.27)

4 The behavior of S(t)uy when t — +00

We recall that for the eigenvalue A of the operator A, we denote by R the orthogonal
projection onto the eigenspace associated with A:

Ryw = Z (W, wj)wj. (4.1)
A=A

As well as if A\, <A < Apa1 and Apyr < A < Apgyq, then
Ry = Py — Py, (4.2)

(Where P, is an orthogonal projection).
The following propositions show that the solution u behaves asymptotically like
Rau.

Proposition 4.1

T S
We start by establishing a lemma that specifies Corollary 3.1.
Lemma 4.1 There exist two positive constants c1 and co such that
lu(t)] = cre”Muo)t=t0) wi > ¢ (4.4)

u(t)]] = cge™Mu0)E—t0) g > ¢4, (4.5)
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Proof. Since ‘IuE ;‘” is bounded, it is sufficient to prove (4.4).

Suppose the inequality

1d

5 [l + [l < (X2 uf?. (46)

By virtue of [Jul|* > A(t) |u|* and (4.6) we obtain

d
- log(|ul? e?M) < 2pAY2 £ 2(X — A). (4.7)
From (3.2) and (4.7) there follows (4.4).

ProoSf( g)f Propo(s)z'tion 4.1. We start by establishing an evolution equation for
tug _ u(t
() = Sul = T
dv 1 du 1 d
R — _ — |u(d)] - 4.
dt \u(t)] dt ]u(t)|2 dt ‘U( )‘ u, ( 8)

but 2(%, u) =2 |u| L |u| = & iyl QU — _(Au+ f(u)) and (4.8) takes the form

dv 1 f(u)
I +(A-Nv= |u(t)]2 (f(u),u)-v— oIk (4.9)
We put
N Lt
We deduce from the estimation of f(u) and of the bounded A(t):
p< |J|c<| ol ||| |v| + f‘( |) <supA(t)ere ™, a >0, (4.11)
i.e.,

p <cse” ™ a>0.

We denote g = (I — Pp)v, thus if we apply (I — Py) to (4.9) and we take the
scalar product in H of the results by Aq, we have, using (4.10),

1d

5 lal + [Ag* = A(®) lal* < p]Aql. (4.12)

Applying the inequality 2p|Aq| < 2¢ |Aq* + g—i (e > 0), we obtain

S gl +201 - <) [AGP — 220 JalP S coe, >0 (413)
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Denoting by A’ > A the first eigenvalue that is strictly greater than A, § =
A’ — A > 0, and since |[Ag]* > A ||¢||?, we deduce from (4.13)

d -
T lgl* +2[(1 =)A= A] fla]* < coe™",  a>0. (4.14)

Choosing € = % , (4.14) will become

d —
Sl + 6l < eoe, a0, (115)
that will be integrated:
t
Ja(OI” < lafto)|*e =) +-¢0 [ =" as, (416)
to
We deduce then
la@®| = (I = Pa)vl| =0 as & — +oo, (4.17)
+oo
/ a1 dt < +oo. (4.18)
0

On the other hand, denoting W(¢) = Pp», where A” < A is the first eigenvalue
of A strictly smaller than A, & = A — A” > 0, the scalar product of Py~ applied to
(4.9) by ¥(t) will be written as

1d

S [P+ I =A@ [2” > —p 2. (4.19)

Applying the inequality of Young to the right-hand side, (4.19) becomes, using
also || W)? > A |¥|* :

d
- [T > (2A(t) — 2(1 + )A") | ¥ — cre™, (4.20)
or, according to A(t) — A(ug) as t — +o00, we can write for ¢ > 1
d 2 AW 2 —at
E|\If| >2(A— (1+)A")|P|" — cre™ . (4.21)
Choosing &’ = %,,, (4.21) will be written as

% W2 > 5 W — eret, (4.22)
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that will be integrated:
ed't

(0" + )

Then, multiplying (4.23) by e 9(t=t0) for t — +o00 we obtain

0)? + (=m0 — = (@=00t) > | (1g)[? £ (t10), (4.23)

W (to)] < cge™ 0, 15 > 0. (4.24)
We deduce from (4.24):
| (t)| = |Pparv(t) = 0 as  t— +oo, (4.25)
+o0
/ Parof? (5) ds < +o0. (4.26)
0

Since (I — Rp)v = Ppynvv + (I — Pp)v, from (4.17) and (4.25) there results (4.3).
Corollary 4.1

+o0o
/ (I = Ry)o|| () ds < +o0. (4.27)
0

Proof. (4.27) results from (4.18) and (4.26).
The following corollary makes precise the convergence of ||v(t)||* towards A(ug).

Corollary 4.2
+o00o
/ A(t) — Aug)| dt < +o0. (4.98)

0

Proof. We note that |A — A(ug)| < (14 Ail) (I = Rp)vl|?, thus from (4.27) we
deduce (4.28).

Theorem 4.1 limy o, e 0 |S(t)ug| exists, is finite and not null.

More precisely: A 0)tS(t)ug converges in H and V towards the eigenvector A(ug)
of A associated with A(up).

Proof of Theorem 4.1. Apllying Ry to the equation % + Au+ f(u) = 0, it
becomes

%(eAtRAu(t))eAtRAf(u) =0, (4.29)



30 M. Z. Aissaoui

that will be integrated:

M Rpu() — M Ryu(s) = — / A R F(u(o) do, (4.30)

S

but |f(u)| < cge~ A+ according to (4.5) and then

t t +00
/eA"RAf(u(U)) do| < ¢ /ea" do < ¢ / e % do < +oo. (4.31)

Consequently, the integral on the right-hand side of (4.30) is convergent and e Rpu(t)
converges.
If limy 1 oo eAtRAu(t) = Up = 0, then the equation (4.30) will be:

“+o00

MRau(t) = /GAURAf(’LL(U))dO', (4.32)

and since |f(u)| < cge” AT > 0, we deduce that
|Rau(t)| < crpe” AT, (4.33)

but (4.33) contradicts Corollary 3.1, since according to Proposition 4.1 we have
|Rau(t)| is equivalent to c|u(t)| when t — oo; consequently, the limit Up(ug) # 0,
and we have

lim eMRpyu(t) = Uy # 0. (4.34)

t—+o00

We simply verify that Uy is an eigenvalue of the operator A.
Because of Proposition 4.1, we deduce that Rpau(t) = wu(t) + e(t)u(t), where
g(t) — 0 (t — +o0) and we obtain

lim eMu(t) = Uy #0, (4.35)

t——+o0

which leads to the proof of Theorem 4.1.

Remark 4.1 Theorem 4.1 proves that for t — +oo, |u(t)] = O(e™) VYu > 0, so
u = 0.
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