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Preface
The book is designed to present the theme of differential equations at undergraduate level that emphasizes solution techniques and applications.  Differential equations are interesting and important because they express relationships involving rates of change.  Such relationships form the basis for developing ideas and studying phenomena in various fields of science, economics, engineering, medicine and without any exaggeration every aspect of human knowledge. Sir Isaac Newton encountered concepts related to differential equations in his studies of Physical World.  Gottfried Leibnitz has also contributed significantly in formulation of fundamental concepts related to differential equations.  Euler, Lagrange and Cauchy provided basic methodology discussed in this book.   The material presented in this book provides foundation for scientific, technological and industrial developments.
The essential features of this book are:

· Narrative that is written at a level that can be read and understood by the average differential equations student.

· A large number of applications so that most equation categories have an identifiable application area.

· A large number of graded exercises, including applied problems that can be understood and solved by any one with knowledge of calculus.

· Solutions, Hints and Answers of Selected Exercises.

Differential equations occupy pivotal position in all established disciplines of mathematics such as Pure Mathematics, Applied Mathematics, Industrial Mathematics, Geomathematics, Biomathematics, and Financial Mathematics.  New mathematical methods, both analytic as well as numeric, have been developed and currently researchers all over the world are engaged to develop refined methods for solutions of differential equations presented in this book.  Higher dimensional analogue of models of this book constitute emerging areas of mathematical research.
There are thirteen chapters in this book.  First seven chapters are devoted to ordinary differential equations.  Chapter eight deals with the systems of ordinary differential equations.  The Laplace transform and its applications to differential equations are discussed in Chapter 9.  Numerical Methods for differential equations are given in Chapter 10.  Chapters 11 and 12 are devoted to partial differential equations such as Heat equation, the wave equation, the Laplace equation, the Black-Scholes equation, the transport equation, Poisson equation, Helmholtz equation, Telegraph equation, KdV equation, are presented.  Chapter 13 deals with the Calculus of Variations with applications.  Methods for solutions of ordinary and partial differential equations discussed in the previous chapters are needed to carry out solution of the problems of the calculus of variations.
Basic definitions and terminology along with the description of real world systems and their representation by differential equations of first order are presented in Chapter 1.  In Chapter 2, we discuss methods for solving differential equations of first-order belonging to certain classes such as separation of variables, exact, linear, homogeneous and Bernoulli categories of equations.  Chapter 3 is devoted to differential equations of first-order and higher degree.  Applications of first-order differential equations to 12 areas; namely population dynamics, radio-active decay and carbon dating, supply and demand and compounding of interest, Newton’s law of cooling and warming, spread of diseases, chemical reactions, chemical mixtures, draining of tank, series circuit, falling body, artificial kidney and survivability with AIDS are treated in Chapter 4.  Chapter 5 develops method for solving differential equations of higher order related to linear equations with constant applications and Cauchy-Euler equation.  Methods include method of undetermined coefficients and the method of variation of parameters.  Chapter 6 deals with the power series solution of differential equations and Sturm-Liouville Theory related to eigenvalues problems.  Modelling and Analysis of real world systems by higher order differential equations are elaborated in Chapter 7.  Modelling of series electrical circuit, falling bodies, the shape of hanging cables, diabetes and glucose tolerance test, rocket motion and undamped and damped motion are considered.
Solution of the system of linear differential equations and their applications are given in Chapter 8.  Laplace transforms and their applications to differential equations are included in Chapter 9.  Chapter 10 deals with numerical methods of ordinary differential equations such as Euler, Runga-Kutta and Picard.  Chapter 11 comprises basic elements of partial differential equations of first-order with constant coefficients, the Lagrange method for solving linear partial differential equations with variable coefficients; Charpit’s method for solving nonlinear partial differential equations of first-order, and methods including Monge’s method for solving partial differential equations of second-order.
Chapter 12 treats partial differential equations representing sixteen real world systems, introduction to Fourier series, method of separation of variables for solving partial differential equations and heat, wave, Laplace and Black-scholes equations with boundary and initial value problems.
Calculus of variations and applications is introduced in Chapter 13.  Calculus of variations problem is to determine a function that minimizes or maximizes (extremizes) an integral.  Necessary conditions for existence of solutions of the problem of calculus of variations are discussed under different conditions.  Euler-Lagrange, Hamlinton-Jacobi, Ostrogradsky equations and their applications to physical phenomena are discussed.

The present book could be an appropriate text book for an undergraduate course for science and engineering students.  Even this book could be used by students of industrial mathematics and financial engineering mathematics.

The book is based on the content of courses taught by the authors to science and engineering students in different parts of the world.  The first author would like to thank the King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, where a major part of the book has been used for teaching certain courses.

The authors would also like to thank Mr. Rajiv Beri, General Manager, Macmillan India who invited them to write the book.
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