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We study the rate of approximation by Narlund means lor Walsh—Fourier seres
of a function in L* and, in particular, in Lip{«, p) over the unit interval [0, 1),
where 2> 0 and 1< p< o, In case p=o, by L we mean Cy., the collection of
the uniformly W-continuous functions over {0, 1). As special cases, we obtain the
earlier results by Yano, Jastrebova, and Skvorcov on the rate of approximation by
Cesaro means. Our basic observation is that the Nérlund kernel is quasi-positive,
under fairly general assumptions. This is a consequence of a Sidon type inequality.
At the end. we raise two problems. 1992 Academic Press. Ine,

1. INTRODUCTION

We consider the Walsh orthonormal system {w.(x} k 20} defined on
the unit interval 7=[0, 1} in the Paley enumeration (see [47]). To be more
specific, let

(x) 1= 1 if xe[0,27h,
YL i xe[2h 1,

rolx + 1) :=rix),

rx) i=ry(27x), jzland xe i,

* This research was conducted while the author was a visiting professor at the Aligarh
Muslim University during the spring semester of 1990.
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376 MORJICZ. AND SIDDIQI

be the well-known Rademacher functions. For k=0 set wy(x)=1, and if
=3 k2, k,=0orl,

is the dyadic representation of an integer & = 1, then sct

s

weix): ﬂ ri(x)]%. (1.1)

We denote by 2, the collection of Walsh polynomials of order less than
n, that is, functions of the form

n—1

P(x):= Z W, lx),
k=0

where n 21 and {a,} is any sequence of real (or complex } numbers.
Denote by X, the finite s-algebra generated by the collection of dyadic
intervals of the form

Lkyi=[k2-7, (k+1)2 ™),  k=0,1,.,27—1,

where m = 0. Tt is not diflicult to see that the collection of &', -mecasurable
functions on 7 coincides with 2., m =0,

We will study approximation by means of Walsh polynomials in the
norm of LP=LP(I), 1< p< 0, and C,= C, (/). We remind the reader
that €. is the coliection of functions f: F— R that are uniformly con-
tinuous from the dyadic topology of 7 to the usual topology of R, or in
short, uniformly W-continucus. The dyadic topology 1s generated by the
union of £, for m=0, 1,

As is known (see, e.g., [6, p. 91} a function beiongs to €, if and only
if it is continuous at every dvadic irrational of 7, is continuous from the
right on /, and has a finite limit from the left on (0, 1], all these in the
usual topology. Hence it follows immediately that if the periodic extension
of a function f from [ to R with period 1 is classically continuous, then
£ is also uniformly W-continuous on /. The converse statement is not
true. For exampie, the Walsh functions w, belong to C,,., but they are not
classically continuous for k = 1.

For the sake of brevity in notation, we agree to write L™ instead of €.
and set

i1, ={f e i p <,
< :=sup{|f{x)]: xel}.
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After these preliminaries, the best approximation of a function fe L?,
1 < p <ot by polynomials in #, is defined by

ELL7):=inf | f=P]|,.
Pe®,
Since #, is a finite dimensional subspace of L7 for any ! < p< o, this
infimum is attamed,
From the results of [6, pp. 142 and 156-158] it foliows that L* is the
closurc of the Walsh polynomials when using the norm |-j|,, t < p<oc. In
particular, C - is the uniform closure of the Walsh polynomials,

Next, define the modulus of continuity in L?, 1< p<oc, of a function
fel? by

w (£, 6):=sup |1, /- fl,, §>0,

I1] =&
where 7, means dyadic translation by ¢
. flx):=flx + 1) xrel
Finally, for each ¥ > (, Lipschitz classes in L7 are defined by
Lip(a, p) = {fel”w,(f 0)=C(6 as§ >0}

Unlike the classical case, Lip{x, p) is not trivial when x> 1. For example,
the function f:=w,+ w, belongs to Lip{a, p) for all « > 0 since

w,(f, 8}=0 when 0<dé<2 !,

2. Man RESULTS

Given a function fe L', its Walsh-Fourier series is defined by

i a,welx), where ak::ff(r)wk(r} dr. {(2.1)
k=0 4]

The nth partial sums of series in (2.1) are

n—1

s, f; X) Z apwilx), azl.
As is well known,

wt

sif¥)=| S+ 0D (0 d,
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where

n—1

D(1):= Y wilo), nxzl,

k-1

is the Walsh Dirichlet kernel of order ».
Let {g,:4>0} be a sequence of nonnegative numbers. The Norlund
means for series {2.1) arc defined by

12 -
rn[,f; x] = z QH—k'sk(.)(! x)e
k=1

where
[T
Qn = z qk' r";l‘
k=0
We always assume that g, > 0 and

lim Q,==. {2.2)

LI

Tn this case, the summability method generated by {g.} is regular if and
oniy if

- u-1
lim 2=t (2.3)
" Q“

As to this notion and result, we refer the reader to [2, pp. 37-38].
We note that in the particular case when ¢, =1 for ail £, these £,(f. x)
are the first arithmetic or (C, 1)-means. More generally, when

k
qk=Af:=(ﬁI ) for k=z1landg,=4%:=1,

where f# —1, —2, ..., the 1,{f. x) are the (C, f)}-means for series (2.1}
The representation

-1 .
tfixy=| flx+ )L (1) d (24)
b0
plays a central role in the sequel, where

L()i=— % q,.:Du), nx1, (2.5)

nEk=1

is the so-called Norlund kernel.
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QOur main results read as follow.

THEOREM 1. Lef fel” 1€ pg o, let n=2"+%, 1<kg€2” m21,
and let {q,:k 20} be a sequence of nonnegative numbers such that

Y gi=¢6¢(1)  forsome 1<y<2. (2.6)

If {q.} is nondecreasing, then

m—1
S 2 e (f2 D40l (f2 ™) (27)

)= Mlrs35- T

while if {q,} is nonincreasing, then

m— 1

5 :
l“n(f)_f”pé——_ Z (Qn—2’+l“Qn—2’+1+1}(’9p[.}‘;2 J)
ZQ" i=0

+0{w,(f,27™). (2.8)

Clearly, condition (2.6) implies (2.2) and (2.3).
We note that if {g,} is nondecreasing, in sign ¢, T, then

ng,_ —

—2=L1= (1 29
0. (1) (2.9)

is a sufficient condition for (2.6). In particular, (2.9} is satisfied if

g.>=<k? or (logk)®  forsome f>0.

Here and in the sequel, g, =, means that the two sequences {¢,} and
{re) have the same order of magnitude; that is, there exist two positive
constants €, and C, such that

Cirosq,Cary for all £ large enough.

If {g.} is nonincreasing, in sign g, |, then condition (2.6) is satisfied if,
for example,
) ge=<k™’ forsome 0<fB<l,or

(i) g.={logk) "  forsome 0<}p. (2.10)

Namely, it is encugh to choose 1 <y <mm(2, f '}in case (i}, and 7 =2 in
case (i),
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TuroreM 2. Let {gq,:k =20} he a sequence of nonnegative numbers such
that in case q, 1 condition (2.9) is satisfied, while in case ¢, | condition (2.10)
is satisfied If f e Lip(x, p} for some 2>0 and € p< =, then

&in %) i O<x<l,
e (f)—fl,=<C{n "logn) if x=1, (2.11)
Cin Yy i ox=1.

Now we make a few historical comments. The rate of convergence of
{C, f)-means for functions in Lip(z, p) was first studied by Yano [10] in
the cases when O<a <1, f>2, and 1 < p< 2¢; then by Jastrebova [1] in
the case when ¥ =f=1 and p=oc. Later on, Skvorcov [7] showed that
these estimates hold for 0 < fi € x as well, and also studied the cases when
a=1, i>0, and 1 € p< oc. In their proofs, the above authors rely heavily
on the specific properties of the binomial coefficients 4%.

Watari [8] proved that a function fe L” belongs to Lip{z, p) for some
x>0 and 1 € p< 2o if and only if

E(f.L")=C(n"").

Thus, for 0 <% < 1 the rate of approximation to functions fin Lip(x, p) by
t,(f) is as good as the best approximation.

3. AUXILIARY RESULTS

Yano [9] proved that the Walsh Fejér kernel

k
1——) welr) nzl,

4] PRI H

1 - n—1
Kty:== % Dilty=}, (
F=1
is quasi-positive, and Kj.(¢) is even positive, These facts arc formulated in
the following

LEMMA 1. Let mz0 and nz1; then Kyn(t) 20 for alf 1€ 1,

al a1

| K (0l di<2 and | Ko

Jo 0

A Sidon type inequality proved by Schipp and the author {see [3])
implies that the Norlund kernel L,{¢) is also quasi-positive. More exactly,
C=[¢{1Y]""2y/(v — 1) in the next lemma, where ¢ (1) is from (2.6).
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LEMMA 2. If condition (2.6) is satisfied, then there exists a constant C

such that

al
P iLmrd<e, nzt.
4]

Now, we give a specific representation of L {t), interesting in itself.

LEMMA 3. Letn=2"4+k, 1 <k<2" and m=1; then

2

QnLn = - z I}WZ»'—I(I} Z f(Qn 2=l i Ga 2f—1+i+1)K:(r)

) wy (1) 27q, . 5 Ky(r)

|
- 3
i
[Nasll

»o
+ 2 Qoo —Quoznig ) Dynils)
i=0

+ Qu s 1 Donl1) + Oy, (£) L (1), (3.1}

Proof. The techniquc applied in the proof is essentially due to
Skvorcov [7]. By (2.5),
2T+ k

0.L,i1) = _i 41 DO+ 4y D)+ L 4, D0

J=2" 4

Z Z QH 21— aD2’+r{t) D2J’J ))

=0 =0
w1 g2
+ Z (Z Yy 2 a') Db"'(r]
J=10 i=0
&
+qrr—2’"D2'”(r}+ Z qJE—Z""—J'DT”-PI('r]' (32)
i=1
As is well known {see, c.g., [6, p. 46]),
Dyn (1) =Doyult) +1,,(1 Di(2),  1<ig2™, (3.3)

Furthermore, by (1.1), it is not difficult to see that

woi () =wy () w, (1), 0«2/
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Hence we deduce that
i 1
Do) =Dy () =r7) Y wi(t)=r,(1)
I=i

=r({)ws (1) Dy (1), 0<i<2’, (3.4

Substituting (3.3) and (3.4) into {3.2) yiclds

mr— | 21

Q,,L”(f}=— 2 r_,.f[f) W?_-‘--l{r) Z Hu 2-'}1D2-" a'(‘fj
f=0 i=0

m—1

+ Z (er—E-'+l_Qn 2""4!)D2J'l{f}
i=0

+Qk+1D2'”(I)+rim{”Lk[”- (35)

Performing a summation by part gives
-1

Z QH ) ."D.‘!-" F{I)
PN
—1

= Z -"Kf(f){f{n 2= 0T Yy 2-'*1-“'-—1]+2’EK3=(”({” 24

i=1
Substituting this into {3.5} results in (3.1).

LevMa 4. If geBw, feLl, where mz0 and 1< p< oo, then for
l<p<ow
al | ol . ) i L.p
|1 0 s & - peona )
0 | Y0
al
<2 w27 gy, (3.6)

=0

while for p= o
‘.I.-l )
sup {‘JU ralt) gl + 1) —fx)] dr: xe!}

ol
€27 ' (L2770 gl de (3.7)
i

Proof. Since g € %, it takes a constant value, say g,{4) on cach dyadic
interval [,.(k), where O0<k<2” We observe that il tef, (k) then
t+2 ™ ‘el (k)

We will prove (3.6). By Minkowski’s inequality in the usual and in the
generalized form, we obtain that

1
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P lip
dx }

T gk} | x4+ 0= fle + 15277 ar

=0 12K}

{ | \ rod0) gOLfx 1) — f()] dt

P lip
dx }

~l - P 1ip
< 2 galk)l {jo [jf o M +—flx+ b2 ") dr:I dx}

koo
e . o . . ] Lip
< X gtk | {\ |.f‘(X+t)—f(x+r+2"”"}r"dx} dr
i fo {26y [ <0
27—
< Z lg,.lk)2=™ lwp{f,z ),
k0

This is equivalent to {3.6).
Inequality to (3.7) can be proved analogously.

4. Proors OF THEOREMS | aND 2

We carry out the proof of Theorem | for 1 € p< o0, The proof for p=«c
is similar and even simpler.
By (2.4). (3.1), and the usual Minkowski inequality, we may write that

7] Iip
elx }

F Lip
dx }

P lip
dx }

ol

Qn ||In[.f) _.fl|p = {l “] QHL"(I}[.)(‘('Y ';' f}—f(‘f}] dt

MU RE

mo1 |
<X {JO lju ) (L (x F 0= f] dr

r=0

m—1 1| a1 .
+ 2 {I) |0 rAD) (O (x + 6} = f(x)] gt
R L N

w1

+ Y Qa2 —Qy 2oy}

0

al | sl
x{J \l Dy (DS x + 1)~ f(x) ] dt
g -0

Fod lip
dx }

r lip
dx}
o1 P Lip
+ Q. {J dx}

=:Alu+A2n+A3n+A4n+ASn, (41}

al a1 \
£ ] “0 Do) fx + 1)— f(x)] d

ol
|, D LD (x + 1) = f(x)] d

0
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say, where

¥

g{t) i=wy_y(2) Z Koy i~ @u_a1404 1, Kil2),

i=1

hj(r) =Wy I(I) 2'14?1—2»" F ZIK}'[r)s 0 ‘“{a.}’{ n.
Applying Lemma 1, in the case when g, T we get that

21

a1
( |gj“]| dt“‘{“z Z i|q:r—25‘1+1_q:1- 2-"'+r+1|
~Q

i=1

=2(2jqn—2)’_ Z . 2"'l+r)‘€-2j+iq;: 24

i=1
while in the case when g, |

e > .
::g_;'(f” dféz Z Gu 241y a'_zjf_;“n—zi
k

i=1
éz(Q:r—Ef-*—l _Qu 201y 1)'
Thus, by Lemma 4, in the case ¢, T
mo 1]
Ain“‘<- Z ZJIQH 2-"wp(_f;2_j)e (42J
i=0

while in the case g, |
Ll ]
A ] & Z (Qn LN Qn—l-""‘ - l}(’oﬂ{j; 2 J} (43)
i=t

By virtue of Lemmas 1 and 4 again, wc obtain that

nr—1
A, 27! Z 27, s ( f,27). {4.4)
f=0
Obviously, in the case g, |
24?(1’;: 2-"“{-Qar—2"+l _Qu 2=l {45]

Since

e f‘ —m‘
Dg,..(r)={2 it re[0,2").

0 if re(2771)
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(sce, e.g., [6, p. 7]), by the generalized Minkowski inequality, we find that

m—1

A3n£ Z (Qn 2-"}1_‘Qu—2."l+1)

=10

[

1 pl . Lip
< ot {[[ 1+ o—stonrax)

#{)

L7 1
= Z (QJ!—2J+1‘QH' 261y I)wp(.f;z—j)’ (46)

s=0
A< Qi w(f,277) (4.7)

Clearly, in the case ¢, 1
O 21— Qu_21 1 € 2jf]u an (4.8)

Finally, by Lemmas 2 and 4, in a similar way to the above we deducc
that

~1
Aﬁn = z_lgkwp(f;z_m) "0 |Lk(‘r)| dt S Can_n{.f’ 27 m]' {49]
Combining (4.1)-(4.9) yields (2.7) in the case ¢, T and (2.8) in the case
qi |-
Proof of Theorem 2. Case (a). g, 7. We have
n—2i=2m for 0€j<m— 1.
Consequently, for such ;s

2}q“ 2}_:(”_2,{'_‘_ I)QN ZJIQn—2"'+I 2_.!' 46-2_;—m+|
Q. Q»r—2f+l Qn n_zj+1h '

where C e¢quals @(1) from (2.9). Since fe Lip(x, p), from {2.7) it follows
that

eyt .
'If,,(_/J—_f.|p=§ > 2, 22 P27
noj=0

=e)2"y 2 @

i=0
&2 ™) if O<ca<l,

=< H{m2-m if 2=1,
2 ™ if x>1.

This is equivalent to (2.11).

4
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Case {(b). g,1. For example, we consider case (i) in (2.10). Then
0, =n'" " This time we have
-2/t pm-! for O jm—2
Since f e Lip(z, p), from {2.8) it follows that

m—1

||tn(f) Z 2 q;a - “J"'wp[_ﬁ 2 j)

:1;0

3
+ 3 W[ 27"+ C e (£,277 )}

0 1 =2 )
é L 2002 027
1 nrfl
(f( ) Z 2;’“ 3=J+(!f_:(2-—m'x:l
i

Cln=1270-7 i D<a<l,
=<{&n'm) if x=1,
@ i x> 1.

Clearly, this is equivalent to (2.11).
Casc {ii) in (2.10) can be proved analogously.

5. CoNCILUDING REMARKS AND PROBLEMS

(A} We havc seen that condition (2.6} is satisfied when g, = {(k + 1}
for some > —1, and Thecrems 1 and 2 apply. If ¢, increases faster than
a positive power of A, then relation (2.6) is no longer truc in general. But
the case, for example, when ¢, grows exponentially 15 not interesting, since
then condition (2.3) of regularity is not satisfied. On the other hand, the
casc when = —1 is of special interest.

Problem 1. Find substitutes of (2.8) and (2,11} when ¢, =(k+ 1) ' In
this case, the r,{f) arc called the logarithmic means for series (2.1).

(B} Ttis also of interest that Theorems ! and 2 remain valid when
qi = ko(k), (5.1)
where fi> —1 and @(k) is a positive and monotone (nondecreasing or
nonincreasing) functions in &, slowly varying in the sense that
@ 2!'(}

£ T plk)
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It is not difficult to check that in this case
QN : ’I] i ﬂ(p(n)

(C} Now, we turn to the so-called saturation problem concerning the
Norlund means ¢,(f). We begin with the observation that the rate of
approximation by ¢,{/) to functions in Lip(x, p) cannot be improved too
much as x increases beyond 1. Indeed, the following is true.

THEOREM 3. If {g.) is a sequence of nonnegative numbers such thai

liminf gom >0, (5.2}

L L i )

and if for some fel? 1< p< m,
[t FY = 1, = 0 Qym') as om0, (5.3)
then | s constant.

We note that condition (5.2) is certainly satisfied if ¢, or ¢,] and
lim g, > 0.

Proof. Since by definition
Epl f L) Nl ) — [
and by a theorem of Watari [8]
Is2m(f) =S, < 2E5m( £, L),
it follows from (5.3) that

Il )= fll,=0(@%")  as m— 0. {54}

A simple computation gives that

AR |

Q?”’{SE"”(}: X) = toml [, ’f)} = Z (Q2m — Qom_y ) apwi(x)

k=1

Now, (5.3) and (5.4) imply that
FL |

lim | Z {Qam— Qom k)akwk(x):i =0,

i B B S k=1
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Since |-, <{-ll,, for any p =1 it follows that

Tim (@ — Qo }a)

1 27 !
= lim j wi{x} ‘[ ): (Qom— Qom 4} ax “‘k_(_-\')} d—‘f'
e Y0 Lk.—.|
2™ N
-«";_, hm \! Z {sz"—sz__k)ﬂkﬂf‘k[ﬂ‘)}} =0
Lo I I k=1 \

Hence, by (5.2), we conclude that «;=0 for all j= 1. Therefore, f =a, is
constant.

In the particular case when g, =1 for all &, the 7,(f) are the {(C, 1)
means for series (2.1) defined by

\ 12 .
a.{f x) = Y osdfix),  nzl,

=1

and Theorem 3 is known (see, e.g., [6, p. 191]). It says that if for some
fel’ lspsax,

Mol f1—fli,=o(277) as  m — oo,
then [ is nccessarily constant.

Problem 2. How can one characterize those functions fe L7 such that

lo(f)=fl,=C(n"") forsome 1<p<oc? (5.5)

We conjecture that {5.5) holds if and only if

Z 27w { f, 27 ") < 0, or equivalently Z wy k™) < o,
=1 k=1

The “if” part can be proved in the same manner as in the case when
w,(f, 6)= (6} for some 2> 1 {cl [6, p. 190]). The proof {or disproof) of
the “only if"" part is a problem.

{D) Finally, we note that the results of this paper can be carried over
to the systems that are obtained from the Walsh—Paley system {w,(x)} by
means of the so-called piecewise linear rearrangemcnts introduced by
Schipp [5]. (See also [7].) In particular, the Walsh-Kaczmarz system is
among them.
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