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The general mildly nonlinear varialional inefuality problem is equivalent to the
problem of solving the Wiener-Hopf equations. This equivalence is used to sugges|
and analyze a number of iterative algorithms for solving general mildly nonlinear
variational inequalities including many known algorithms as special cases for, solving
general variaticnal inequalities. The convergence criterid for these algorithms are
discussed and be present resulis reflect the extension and improvement of Noor's
results.
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1. INTRODUCTION

Variational inequality theory introduced by Stampacchia' is a powerful tool of the
current mathematical technology and has been extended and generalized to study a
wide class of problems arising in mechanics, optimization and control problems,
operations research and engineering sciences, etc. An important and useful generaliza-
tion is the general variational inequality introduced by Noor> * in_the study of
odd-order obstacle problems. Now there has existed many known iterative methods
for solving variational inequalities*’. Among the most effective methods is the
projection technique and its variant forms. But there is no such method for general
variational inegualities, except those of Noor 3. Recently, Noor® proved that general
variational inequality problem is equivalent to solving the Wiener-Hopf equations
(Speck?). Using this equivalence, he suggested and analyzed a number of iterative
algorithms for solving general variational inequalities. And aiso he discussed the
convergence criteria for these algorithms. On other hand, in 1991, Noor*? introduced
and studied a class of variational inequalities which is known as the general mildly
nonlinear variational inequality problem and is the extended form of variational
inequalities. This class of variational inequalities enables us to study - differential
equations of both odd and even order. Inspired and motivated by the recent research
work of Noor® 19, we show that the general mildly nonlinear vanational inequality
problem is equivalent to the problem of solving Wiener-Hopf equations. This
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equivalence is useful from the numerical and approximation point of views and
enables us to suggest and analyze a number of new iterative algorithms for computing
approximate solutions of general mildly nonlinear variational inequalities. We also
study the conditions under which the approximate solution obtained from the iterative
algorithims converges to the exact solution of the general mildly nonlinear variational
inequalities.

In section 2, we formulate the general mildly nonlinear variational inequality
related to the third order two peint boundary value problems and review some basic
resuits. In section 3, we prove the equivalence between mildly nonlinear variational
inequality problem and the problem of solving the Wiener-Hopf equations. This
equivalence is used to suggest some new iterative algorithms. Convergence criteria
are also discussed.

2. PRELIMINARIES

Let H be a real Hilbert space with norm and inner product denoted by I} - ) and
{-, . respectively. Let C be a nonempty closed convex subset of H and. T and g
be nenlinear continuous operators from H into itself, Then we consider the problem
of finding u € H such that g(u)e C, and

{(Tu, gv)— gLy y 2 {A(w), glvy— gl ), for all gV e C e D
where A is a nonlinear continuous mapping from H into itself. The inequality (1) is
known as the general mildly nonlinear variational inequality.

Remark 2.1 : A large number of differential equation problems of odd and even
order can be characterized by a class of vairational inequalities of the type (1). For
simplicity, we consider the third order two-point boundary value problem

T(u) 2 fir, w(x) in D
u(x) 2 p(x) inD o3
[Au — fix, ulx))] [u(x) - p(x)=0 inD -
#=0 and «'=0 onD

where D is a domain in R? with boundary § = [0, 1], T = — d*/dx’ is the differential
operator of third order, f is a given nonlinear function of x, and A(x) is the given
obstacle function. To study the problem (2) in the vanational inequality framework,
we define

C = {ue Hy(D): ulx)2 yx) on D},

which is a closed convex set in Hg(42). Now using the technique of K-positive
definite operators, as developed by Noor'!, we can show that the problem (2) is
equivalent to finding u € Hy (42) such that Ku e C and

{Tu,Kv—-Ku)={Au, Kv-Ku), for all kve C, o (3)

where
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I 1
(Tu.Kv)=— | DuDvdx= | D% Dvdx o (B
4] {
and
|
(AuKv) = | o0 ux) D dx w (5)
1]
with K = dids = D.

It is clear that with g = K, we have the variational inequality problem (I},

Special Cases

(i) If gx) = x and A{x} = O for all xe H, then problem (1) 15 equivalent
to finding u € C such that

(Tu,v—uy20, for all ve C, .. (8)

which is known as the variational inequality problem, introduced and
studied by Stampacchia' and Hartman and Stampacchia'?; see also Noor

(ii) If A{xy = 0 for all xe H, then problem (1) is equivalent to ﬁnding
€ C sucht hat g(u)e C and

(Tu, glv)—g()y =0, for alt g(v)e C, e (N

which is known as the general variational inequality problem introduced
by Noor® in the study of odd-order obstacle problems; see also Noor.

(iii) If g(x) = x € C, then problem (1} is equivalent to finding # € C such that
{Tu,v-u)z{A{u),v—u), for all ve C. .. (8)

Inequalities (8} are. known as mildly (strongly). nonlinear variational ine-
qualities, which were intreduced and considered by Noor'™ " in the theory
of mildly constrained but strongly-nonlinear differential equations. For the
finite element error estimates of these variational inequalities, see Noor'!.

(iv) If C' = {ue H:{u,v}20, for all ve C} is a polar cone of the convex
cone C in H, C cg(C), then problem (l) is equivalent to finding
i€ H such that

guye C, (Tu-Alu))e C, (Tu-Au),gu}) =0 o (D)

which is known as the general mildly nonlinear complementarity
problem, introduced and studied by Noor'’. Problem (9) includes
many previously known complementarity problems as special cases
(see References' 8 8 9 1518y,

(v) If C = H and A(x) = O for all x€ H, then problem (1) is equivalent to
finding u€ H such that .




1320 A. H. SIDDIQI, M. F. KHAN AND R. AHMAD

(Tu,g(v) )= 0, for all g(v)e H, . (1)

which is known as the weak formulation of the odd-order boundary-valued
problems. .

We need the following concepts :
Definition 2.1 — A mapping T: H — H is said to be
(a) Strongly monotone, if there exists a constant & > 0 such that

{Tu-~Tv,u-vizallu-vI for all u,ve H.
(b) Lipschitz continuous, if there exists a constant # > 0 such that
tTu-Tvl€fhu~-vll, for all u,ve H,

In particular it follows that < 4.
We also need the following well-known results.

Lemma 2.1 (Noor'*y — If Cc H is a closed convex set and z€ H is a given
point, then u € C satisfies the inequality

{u-z,v—u)z 0 for all ve C
if and only if
u=Pcz, I

where P, is the projection of H onto C.
Lemma 2.2 (Noor'") — The mapping P defined by (11} is nonexpansive, that
is
WPt —PNVUZWNu—vll for all u,ve H.

Let Pc¢ be the projection of H onto C, and let Q- =7- P, where [ is the identity
operator. If g-! exists, then we consider the problem of finding z € H such that

(T-A)g "' Pez+p' Qcz = 0, . (12)

where p > .0 is a constant. Equations of the type (12) are called more general
Wiener-Hopf equations. :

Special Cases

(i) If A(x) = 0 for all xe H, then problem (i2) is equivalent to finding
ze H such that

Tg' Pez+p ' Qz = 0, - (13

where g > 0, is a constant. Equations of the type (I13) are called general
Wiener-Hopf equations, introduced and studied by Noor.

(ii) -If g(x) = x and A(x) = 0 for all xe H, then problem (12) is equivalent
to finding z e H such that
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TPz +p7' Qcz = 0, .. (14)
where ¢ > 0, is a constant. Equations of the type (14) are called the Wiener-Hopf
equations.

Remark 2.2 : For the application and general treatment of Wiener-Hopf equations,
see Speck®. Using essentially the projection technique, Shi'® has shown that the
variational inequality problem (6) is equivalent the Wiener-Hopf eq. (14). This
equivalence has been used by $hi?® and Noor?' to suggest and analyze a number of
new iterative algorithms for solving variational inequalities. For computation results,
see Pitonyak et al?.

3, MaIN RESULTS

First of all, using the technique of Shi'* as extended by Noor*?, we prove the
following result :

Theorem 3.1 — The general mildly nonlinear variational inequality (1) has «
solution ue H such that gluye C, if and only if the more general Wiener-Hopf
equation (12) has a solution 7€ H, where

z=g(u) - p(Tu - Alu)) e (15)

and
glu)y=Pez, .. (16)

where P is the projection of H onto C and p > 0 is a constant.

PROOF : Let ue H be such that g(u)e C is a solution of {1). Then by Lemma
2.1, it follows that

glu) = Pclglu) - p(Tu - A(w))]. - (17)
Using Q.=171- P, and applying (17} respectively, we obtain

Qc [g(u) — p(Tu - A(u))] = g(u) - p{Tu — A)) — Pcle(u) - p(Tu - A())]

~ P(Tu—AW))

— AT -A) g Pe [g(u) - (T — A,
from which it follows that

(T-A)g ' Pcz+p! Qe = 0,
where

2= glu) - o(Tu — A(u)),

and g is the inverse of the operator g.
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Conversely, let z€ H be a solution of (lﬁ), then, we have
pPIT-A)g! Pez=-Qcz=Pcz-2 . (18)
Now from (18) and Lemma (2.1) for all g(v) € C, we obtain
0<(Pez-z,80)-Pcz)=(p(T~A) g Pcz, g)-Pez),
from which it follows that
((T-A) gl Pez, gv}—Przy20, for all gv) € C.
Thus, g{u} = Pc(z) is a solution of (1}, and from (18) we have
= g(u) - (T - AW)).

Remark 3.1 : It is obvious that general mildly nonlinear variational inequalities
and more general Wiener-Hopf equations are equivalent. This equivalence is very
useful from the numerical point of view, Using this equivalence and by an appropriate
rearrangement we suggest a number of new iterative algorithms for solving general
mildly nonlinear variational inequalities (1).

(i) The more general Wiener-Hopf eqs. (12} can be written as
Qcz=-p(T-A) g™ Pez,
which implies that, using (16),
2=Pez-p(T-AYg™! Pez
= glu) - p(Tu - Au)). - (19)

This formulation enables us to suggest the following iterative algorithm for svlving
the general mildly nonlinear variational inequalities (1).

Algorithm 3.1 — For a given e H, compute z,,, by the iterative scheme

gluy) = Pcz, .. 20)

Zy 1 = 81,y — p(Tu, - A(u,)) .. (21

(ii} By an appropriate rearrangement, the mote general Wiener-Hopf egs. (12)
can be written in the following form,

2=Pez-p(T+A) g Pez+ (I -p N Qcz
= u—p(Tu-AG)) + I -p ) Oz

by using (16). Using this formulation, we suggest and propese the fol-
lowing iterative algorithm.

Algorithm 3.2 — For a given z5e H, compute z,,; by the iterative schemes

3(“::) = PCzn
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Z;-;.;.] =un_p(Tun_A(un}) + (I_,o—]) chm n = Os 1-: 2: .

(i} If A(x) = O for all xe H, the operator T is linear and 7' exists, then
the more general Wiener-Hopf equations can be written as

z=(-p"' gT") Qcz.
This formulation enables us to suggest the following iterative schemes for solving

general variational inequalities

Algorithm 3.3 (Noor®} — For a given zye H. compute z,,, by the iterative
scheme

g(un):PC(zn)
Zas1=0F—p ' gT N0z n=01,2 ..

We now study those conditions under which the approximate solution z,,, obtained
from Algorithm 3.1 converges to the exact solution z of the more general Wiener-
Hopf eqs. (12).

Theorem 32 — Let T, g : H— H be both strongly monotone and Lipschitz
continuous operators, and A: H— H be a Lipschitz continuous operator. If z,,, is

obtained from the iterative scheme (20)-(21), and if z€ H is the exact solution of
the more general Wiener-Hopf equations (12}, then

Zn+1 2, Stromgly in H,

for
Latvk-1 | MarvE-DF - F - A2k
1,0 7 }‘: 7o L ko< 1
a>vt-B+VFE -V 2 -0, l - < e,
and

k=2V1-28+ o®,

where o, fF and v are Lipschitz continuity constants of g, T and A, respectively and
& and @ are strong monotonicity constant of g and T, respectively.

PROOF : Let z€ H satisfy the more general Wiener-Hopf eq. (12}. Note that
equations (12} can be written as (16) and (19). Hence, from (19) and (21}, we have

2y 41 =2 =11 g(1ay) ~ g(t) — (T, — Tit) + p(A{1t} ~ AU} )
Sy, —u—(gluy — g W+ N u, — u— p(Tu, - Tu) Il
+ Hp(A(u,) - AQ) It o (22)

Since T, g are both strongly monotone and Lipschitz continuous, by using the
technique of Noor'}, we have
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W, —u—(g(u,) - gDV (1 =20+ 0% lu, —u 2, .. {23)
and
Wu, —u—p(Tu,— T} IR S (1 - 20+ 2) lu, — 1 12, (24

where o and £ are the strong monotonicity constants of g and 7, respectively, and
& and a are the Lipschitz continuity constant of g and T, respectively.

From (22), (23), (24) and by using the Lipschitz continuity of A, we obtain
2ye1-20<{VT=26+ 07 +pv+N1-20a+02F | Nty - ull

=_{%k+pv+r(p)}lluﬂ—ull. - (25)

where
k=2N1-20+02 < |,
Ho) =1 -2pa + PP,

and v is the Lipschitz continuity constant of A.
From (20), we have

o, — e =112, — 16 — (g(us,,) — @Y+ Pz — Pez b
V1 =26+ Nu,—ull+lz,-zI

S=klu,—ull+lz,-zI

b =

Using (24), from which it follows that
Moy~ ll < (1A k2N z, -zl - (26)
From (25) and (26), we obtain
Iz, 41~z N S{ R/ + oW/ (1 -k/2) P 2, -zl = Bl 7, ~ I,
where
= {(k2+pv+i))/ (1 -k/2}} < 1,
which is equivalent fto
k+pv+ip)<l.
Now #{p) assumes its minithum value for p=a/fF with t(p)= m . We have
to show that k+pv+t(p}<1. For pfﬁ, k+pv+i(p) <1 implies that & < | gnd
a>vl -k +V(B - ) k(2 - k). Thus it follows that k+pv+1{p)<1 for all p with
a+Uuk-1)| Na+vEk-DE-(F -1V k2-k)
’p‘ F-vi |© P
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a>vl -+ V(T kR -k), Ml -k <a, and k < 1.

Since # < 1, so the mapping defined by (19} has a fixed point z, which is the
solution of (12). Furthermore, it also follows that z,,, — z strongly in H, is the

required result.

BoWo -

Remark 3.2 .

(i) If A(x) = 0 for each x € H, then Theorem (3.1—3.2) reduces to Thecrem
(3.1—3.2) of Noor®. Therefore, our results improve and extend Noor's
results®;

(ii) The iterative methods suggested and analyzed in this paper are very
convenient and are reasonably easy to use for the computation. Pitonyak
et al?* have presented some numerical examples of solutions to obstacle
problems for the membrane and the elastic string using a special case
of Algorithm 3.3. In order to develop efficient and implementable algo-
rithms, further research efforts are needed.
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