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1 Introduction
In the seventies Moreau [14] introduced and studied the evolution problem
—u'(t) € Ne(u(t)) a.e in [0, T, u(0) =y € C(0) (1.1)

which describes the motion of a ball inside a ring. Here u(t) is the position
of the ball at time ¢ and C(t) is the ring at time t. Ngyy(u(t)) denotes the
outward normal cone to the set C{t) at the position u(t). Thus {1.1) tells us
that the velocity «/(t) of the ball has to point inwards to the ring at almost



every time t € [0, T]. The initial condition (0} € C(0) states that the ball
is initially contained in the ring. (1.1} is known as the Moreau's sweeping
process. This includes evolution variational inequality as a special case.
Find u(t) € K a.e. such that

(u'(t)vu - u) 2 (f: v T..‘.> . (12)

for all v € K, K is a subset of a Hilbert space H, u : [0,T] — H,f ¢
Ly(0,T; H*).

Several extensions and applications of the Moreau sweeping process in
diverse fields {7}-[15], [20]-[22] have been studied. For a lucid introduction of
this process along with numerical aspects and applications we, particularly,
refer to Moreau {15]. While studying the heat control problem one encounters
the following evolution variational inequality.

Find u = u(z, t) such that '(¢) = 8u(-,t)/0t € H'(Q) and

(W (t),v — (1) +a(ult), v — () + 5{v) — 5 ('(¥) < (f(t),v - u'(tg) )
1.3

where j(-) is convex and lower semicontinuous with values in (~o0, +00) but
not identically +oo (for details see {4, 80-94] and {5, 454-476}). In particular
we may consider variational inequality [1-6, 16-19] of the type

Find v = u(x,t) such that v'(t) € H'()

(W'{t),v—u'(t)) 20 (1.4)

and look for existence and uniqueness of solution of a variant of Moreau
process, namely
Find u = u(z, t) € C(¢) such that «'(¢) € C(¢) and

~u'(t) € Neg(u'(t)) (1.5)

which inciudes (1.4} as a special case.

The variational inequality of the type (1.8) is the formulation of the dy-
namic analogue of the Signorini problem (see |4, 154-162] and {5, 476-487]).
Find 4'(t) € C(t) for all ¢ such that

(un(t),v‘—- W(t) + a(u(t),v —w'(t) + i{v) - j(t)
> {f(t), v —u'(t)) } (1.6)

for all v € C(t) and with the initial conditions u(0) = ug, w'(0) = wus.
A natural question is whether the following sweeping process has a unique




solution:
Find u(t) € C(t) such that u'(t) € C(¢) a.e. ¢ and

—’U."(ﬂ) € IVC[”(U’(t)), 'U.(O) = g, u"(O) =Y. (17)

The main goal of this paper is to study existence and uniqueness of sweeping
processes described by (1.5) and (1.7).

2 Notation and Preliminaries

Let H be a Hilbert space with an inner product {-,-). For a closed convex
subset C of H the set

Ne(z)={ye H|{y,v—z)<0,YveCl,z €,

denotes the normal cone to C at z. Let dy(A, B) denote the Hausdorff
distance between two subsets A and B of H and it is defined as follows

dy(A, B) = max{sup d(z, A),supd(z, B}} (2.1}
TR ZEA

where d(z, 4) = inf{|lz -yl | y € A}.

For any Banach space X, we denote by C™([0, T]; X'} the space of continuous
functions u : [0,T) — X that have continuous derivatives up to and including
those of order m on [0, T} with the norm

ellomoryx) = z;ggwmﬂh (2:2)

and by L,(0,T;X) for 1 £ p < oo the space of all measurable functions
u: (0,7} — X for which

T i/p
Hﬂmwm*(ﬁiwwﬂ) <oo. (2.9

The space of measurable functions u : (0,7) — X which is essentially
bounded and denoted by L,(0,7T; X) and this space is endowed with norm

|lull = ess sup [lu(t)llx (2.4)
0<t<T

Some properties of those spaces are listed in Theorem 2.1 [23].

Theorem 2.1 Let_ m be a nonnegative infeger and 1 < p< oo, Let X be a
Banach space.



a) C™([0,T); X) with the norm (2.2) is a Banach space.

b) L,(0,T; X) is a Banach space if we identify functions that are equal
almost everywhere in (0,T).

¢) If X is o Hilbert space unth inner product {-,-}x then L,(0, T X) is
also o Hilbert space unth the inner product

T
(o = [t o)t 2.5)

The topotogical dual of a Banach space X is defined by X* and the operation
of an element u* € H* on an element u € X is represented by (u*,u). If X is
separable the L, {0, T; X*) is separable and (L,(0,T; X))* = Lo{0, T, X*). If
X is a Hilbert space then (L,(0,T; X))* = L,(0,T, X*}. For a Hilbert space
H, we define by W'2(0,T; H) the space of functions © € Ly(0,T; H) such
that «' € Ly(0,T; H), equipped with the norm

Ilu”%w-z{o,r;ﬂ) = “u”%g(O,T;H) + ”ur”ig(ﬂ,T;H) (2.6)

where u' denotes the generalized derivative of f on (0,T). A function w =
u{™ is the generalized derivative of the function u on (0, T) if and only if

T T
/ S ()u(t) dt = (—1)" f S(tyw(t) dt (2.7)
0 Q

for all ¢ € C3°(0,T) - the space of infinitely differentiable functions having
compact support. The integrals in (2.7) exist if u,w € L;(0,7; H). The
generalized derivative is unique, if the function u : [0,7] — H is continuous
and the derivative

w(t) = lim u(t+ h) — uft)

h—0 h (28)

exist for all ¢t € (0,7} as a limiting value in H; and v’ : [0,7] — H is also
continuous then u’ is the generalized derivative of u on (0,7). Moreover, if
u € Ly(0,T; H) then v’ € Ly{0,T; H*). The following results [23] are needed
in our subsequent discussion.

Theorem 2.2 ([23], p.421) Let H be a Hilbert space and let v : (0,T] - H
be Lipschitz continuous, that is

lu(t) —u(s)|| < Lt — s} forallt,s€[0,T] (2.9)
and fized L > 0. Then




a) For almost all t € [0,T), the function v has a derivative,

oo . u(t+AR) —u(t)
wl(t) = Jim ———

and .
u(t) = u(0) + / u'(syds forallt €[0,T]
0
b) For almost all t € [0,T]
') < L
and u' 15 the generalized derivative of u on (0, 7).
An operator A : H — H* is called monotone if
(Au—.A‘u,u—v) >0 forallu,ve H (2.10)
A is called strongly monotone if there is a constant 5 > 0 such that
(Au — Av,u—v) Zﬁ[lu—vH:for allu,ve H (2.11}
A is maximal monotone if and only if
RA+I)=H.

For this characterization which was also proposed by Minty and other related
results see [23, chapter 32].

It may be observed that if X = Rthen v/ foru: X =R 5> X* = R is
strongly monotone if u is C? and «"{¢) > cfor all ¢ € R and fixed ¢ > 0. «'
is strongly monotone if u is C' and satisfies w'(2) — ¥/(s) > ¢(t — 5) for all
t>s€ Randec> 0.

Let

Di{u) =4 , dom{(D)) ={ue W"?(0,T;H) |u(0) =0} C H
Dy(u) =v' , dom{D,) ={ue W0, T;H) |u(0)=u(T)} C H
Then D, : dom(D,) — H* and D, : dom(D,) —» H* are maximal monotone

operators.
A moving set valued map t — C(t) is called Lipschitz continuous if

dy(C(t),C(s)) < Lt —s|, ¢,5s € [0,T] (2.12)

for some constant L > 0. Our aim is to prove that for a Lipschitz continuous
moving set C(¢) there exists a unique solution to (1.3). By a solution of (1.5)
we mean a function u : [0,7] = H such that

b}



a) u(0) = ug

b) u(t) € C(t) for almost every ¢ € [0, T}

¢) u'(t) € C{t) for almost every ¢t € (0,7)

d) —u'(t) € Nggy(u'(t)) for almost every ¢ € [0, T

The following discretization process is needed for the proof of the solution of
the sweeping process. We fix n € N and choose a time discretization

0=t <t <... <ty <. =T (2.13)

with t7,, ~ 7 <1 0<i<m—1. We may set £ = L, but we need not fix
the discretization explicitly. The value of m will depend on n and m — oo
for n — oc. We define the step approximation v” : [0,T] —» H as follows.
Let

ug = g, uy =y +proj(0,C(t,)} € Ct,), (2.14)

0 <7< m—1. The u, are defined via linear interpolation

t—

Up(t) = ul' +
S

(u?+1 - u?)? te [t?lt:ﬁ-l . (215)
For £ € H an element y of C' is called the projection of z on C C H {C'is

closed and convex) written as

y=proj(s,C) if - o = 4z, C) = inf s — 2. (2.16)

Equivalently y = proj{z, C} if
ly—z,y—2)<0forallzeC. (2.17)

For our discussion we assume that 0 € C(¢) and C{t) is a cone and u'(¢) €
C(t) whenever v/(t) exists and u(t) € C(2).

3 Existence Results and related Lemmas

Theorem 3.1 Let t — C(t) be Lipschitz continuous, that is, satisfy (2.12)
and C(t) C H be nonempty, closed and convez for every t € [0,T]. Let
ug = u(0),u} = u(0) belong to C(0). Then there exists a unique solution
u: [0,T] — H of (1.5) which is Lipschitz continuous. In particular, u €
Loo(0,T;H) and v’ € Lo(0,T; H).




Theorem 3.2 Let t -+ C(t) be Lipschitz continuous, that is, satisfy (2.12)
and C(t) C H be nonempty, closed and convez for every t € {0,T]. Let
uy = u{0),ud = u"(0) belong to C(0). Then there ezists a unigue solution
v [0,T] — H of (1.7) which is Lipschitz continuous. In particuler, u €
Loo(0,T; H), W € Loo(0, T; H) and u” € Ly(0,T; H).

Lemma 3.1 ([13], p.10) Let H be a Hilbert space and {u,} be a sequence
of functions u, : [0.T] — H that s bounded uniformly in norm and variation,
that 1s,

flua(t)| < My, neN, t€{0,T] and
ver{u,) < My, neN (3.1}

for some constants My, M, > 0 independently of n € N and t € [0,T]. Then
there ezists a subsequence {un,} and a function u : [0,T} - H such that
var(u) < M, and u,, (t) — u(t) weakly in H for ollt € [0,T), that is,

(un, (t),2) > {u(t),z} forallz€e H (3.2)
as k — oo.
Lernma 3.2 ([10] or [23], p.258) a) Let u, — u weakly in H. The
lull < lim_inf Jiun (3:3)
holds.

b) If un € C + B, (0) for some closed convez C C H and some sequence
en — 0, thenu e (.

Lemma 3.3 (Rockafellar, R.T. see [10]) Let {vn} be a sequence of func-
tions v, : [0,T) — H such that v, — v, in the weak* topology of Lo ([0, T7]; H),
that is,

T T
f o (£), B(8)) dt — / (wu(t), B(E) dt as n— o0 (3.4)
V] 1]

for all ¢ € L1([0,T); H). Suppose that for eacht € [0,T} the set C{t) C H is
nonempty, closed and convez such that (2.12) is satisfied. Let

®(v) = /a 5 (v(t), o(t)) dt (3.3)

for v € Loo(0,T; H), where §*(z,C) = sup{{z,c) | c€ C} forz € H. Then
& is lower semi-continuous, that is,

®(v.) £ lim inf ®{v,).
n—on



Lemma 3.4 ([10]) Let u : [0,T] — H be a continuous function that is
- differentiable at almost every point t € (0,T). Then

T
@) {(u’(f), u(t)) dt = glu(T)]? - 3|u(0))?
b) (gl () = (W), w' (1)) = Il ()%

4 Proof of Theorem 3.1

Step 1. First of all we show that if u is a weak limit of u, given by (2.15)
then u € L{0,T; H), that is, |u(t)} < M for almost every t € [0,T]. It can
be seen that

[ufs — vl € du(CE), C(8)) < LIt ~ £, (4.1)

where we have used discretization in Section 2, (2.14) and (2.12). If u, is
defined by {2.15) then

var(un) = Z fun(ti) — un{t)ll = Z [ — 'l

m-—1
< LY (B -t)=L1T =M,
i=1
lufadl < Bufll + L(8, — 1)
and

fun(@l < Nl + Lijudy, — ul]
< lwoll + L{EY, — &)
<

|wo| + LT = M, (4.2}

for t € [t7,¢2,,]. Consequently the desired result [ju,(¢)|| < M, holds for t €
[0, 7 as the above relation is true for all n € N and t € [0, 7. Since {u,(t)}
is a bounded sequence in Hilbert space H we can extract a subsequence still
denoted by u,(¢) which converges weakly in H say un(t) — u{t) weakly for
all £ € [0, 7] (Lemma 3.1}.

Step 2. t — u(t) is Lipschitz continuous.

Let un(0) = ug then weak limit of u,(0) = u({0) = up. For t € {7, ;L__l] and




s € [t},t3,;] for some 0 < j,¢ < m — 1 (without loss of generality we can
assume ¢ < j, that is, ] < t“) from (2.12) and (4.1) we obtain

lun(t) —un(S)l < un(t) —un(tF)l] + Z l[un(tier} — ualti)]
k=i+1

+ IIun(tI‘+1) un(s}]
t—t;

< m—lud - “||+Z||uk+1 H
J+1 3' k=i+4]
b1 —
¥
——tﬂ“‘“p—l u?ll
1+1

b 3
D lufey —upll S LD fitg,, — 2l = L{t2,, — &)

k=i k=3

A

or
2
lua(t) — un(s)l] < LIt — s+ |s =7+ 18], —t] < L (|t -5+ E) . {4.3)

By (4.3} and Lemma 3.2(a) we get
Ju(®) = ()} < lim inf [fun(®) ~ wn(s)] < Lt~ o]

as weak limit of (un(t) —un(5))} = u(t} —u(s). Therefore u is Lipschitz contin-
uous and by Theorem 2.2(a), u'(¢) exists for almost every ¢ and |Ju'(¢)|| < L
by Theorem 2.2(b). Hence u' € Lo(0,T; H}. Clearly 4'(0) = uj.

Step 3. To show that u(t) € C(t).

By (2.13) and (2.15) we have

1 -1

v}
1+1 t

b~

llefer —ufIl < Lile — 8|l < L(£y, — 1) < —

3

for t € [tF,t7,,]. Hence by (2.15), (2.16) and (2.12), for ¢ € [t7, 7],

‘U-ﬂ,(t) € C(t:‘) -+ BL{“ ({])
C C(t)+ Brg-m(0) + Bya(0)
C C(t) + BzL!!n(U) ; (4.4)

(2.13) has been used in the last step. It is clear that (4.4) holds foralln e N
and ¢ € [0, T}, and so Lemma 3.2 yields u{t) € C(2) for all ¢ € [0,T)].

9



Step 4. To show that u is a solution of (1.5).
By {2.14) and (2.17) we have

(i, —wluln —uw —v) <0, vel{l). (4.5)
From (2.15), {4.1) and {2.13) we obtain

tn
fualt) = wlia | = ;‘—tﬂnum ufll < L{tky - 1) <

141

t € [t?,t2,]. Since by (2.12),

St

Clt) c C{tl,) + Brup,,-5(0)
C C(thy) + Bia(0)

for t € (17, t7;], we find from (4.5} and (4.1) that
(u?+1 u; ’ un( ) - ‘U} = (u?-i-l ‘U.‘ lu:+1 ‘UJ) =+
(ufy, — ul, [u () — (i, — ul)} + fw — o))

] L L\ 2L i
< M-l (5+2) < B - @

for t € [t7,t2,] and ¢ € C(t). In the interior (¢7,t},,). un is differentiable
with derivative u (¢) = (¢, — t7)~}(ul,, — u?) and hence by {4.7) we get
() -0 S 2, e (@8 (43)
v € C(t). The estimate {4.1) also shows that
lun(l < L, t#¢],

hence
lun(t) | worey S L, nEN.

Since Loo(0,T; H) is the dual space of L,(0,T; ), it is a consequence of the
Banach-Alaoglu theorem that we may extract a further subsequence, again
indexed by n (see for example [10] or [23], p. 260), such that u], — v, for
some ¥, € L,{0,T; H) the consequence being in the weak star topology on
L(0,T; H). This means that for all ¢ € L,(0,T; H)

/{u (t), 9(1)) dt—)[ (va(t),@(t))dt asn — o0
0

10



According to the differentiability of u,,

[ 4
un(t) = ug +/ u,(s)ds, tel0,T].
0
It can be seen that
4
ua{t) = ug +/ v.(s)ds, t€[0,T].
0

This again shows u : {0,T] = H is differentiable for almost every point ¢ €
(0,7), and moreover u'(t) = v.(¢) for almost every ¢ € (0,T). In particular
—u!. = —u' in the weak star topology on L.(0,7T; H). By lemma 3.3 this
gives

T T
/ 5 (—u'(6),C(0) dt < lim inf [ &(—ul(0),Ce)}dt  (4.9)
0

n—oo o

(for a definition of 8*(;, ) see Lemma 3.3). It is clear that

f (W'(t),u' (i) dt < 11m mf/ (ul (t),u,(t)) dt {4.10)

Taking supremum w.r.t. v in (4.8) and integrating over [0, T] we find that

T
Aw%wmcmwwmmaMﬁ<ﬂz (4.11)

for n € N. Using a well known property of the limit inferior of a sequence
(4.9}, (4.10) and (4.11) we get

/T [57(—u'(2), C{t) + (w'(¢),2'(¥))] dt < 0. (4.12)

We have shown in Step 3 that u(t) € C(t),t € [0, T}, and so v'(t) € C(¢). By
the definition of §*(-, ) we get

5 (~u'(2), C®) + (W'(8), w/(2)) = 0
for almost every ¢ € (0,T). Thus for any v € C(t}

(—u'(t),u(t)) = & {~w'(),C(1))
> (-u'(t),v)

or
(—w'(t),v —u'(t)) £ 0.
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Hence u(t) is a solution of (1.3)
Step 5. Uniqueness of solution.
Let u; and u; be two solutions of (1.5} then

{(—ui(t),v —u(t)) <0 (4.13)
and

(—us(t), v —uy(t)) < 0. (4.14)
Put v = uj(t) and v = uj(¢) respectively in {(4.13) and (4.14) then we get

(—u(8), ua(t) — uy(8)) <0 (4.15)

{(—up(t), uy (1) — w5(1)) < 0. (4.16)
From {4.15) and (4.16) we get
(ui () —ualt), vy (1) —uo()) <0
or
' (®)]2 = 0 (4.17)

where w(t) = u{(t) — u5(¢). From (4.17) we get

[ worde=o asw)=o.
0
Be Lemma 3.4

/t li Il PAYEN 0

e -

or u{§) = 0,€ € (0, T} or ua(§) = ux(€), V€ € (0, 7).
5 Proof of Theorem 3.2
Let u'(t) = ¢{t) and u"(t) = ¢'(¢). Then ¢'(t) € Negy(o(t)) for almost every
t € (0,T) holds by Theorem 2 [10} (Theorem 2.1 [13, p. 141] or Moreau
[14]) provided &(t) € C(t). t — ¢(t) is Lipschitz continuous with constant

L. In particular {¢'(¢)] = |u”(t)} < L for almost every t € (0,T) and so
u”(t) € Lo(0,T; H). Let ¢,(¢) and ¢;(t} be two solutions of (1.7} then

{(=¢i{t),v - (1) <0 (5.1)

12




(=da(t),v — ¢2(2)) < 0. (5.2)
By (5.1) and (5.2) we get
(91(8) = d5(t), 1(2) — 2(t)) < 0. (5.3)
By Lemma 3.4 we bave

1d

57} - $a(t)[%) = (D1 (2} — ¢3(2), 41 (2) — $2(8))| <O

almost everywhere in {0,7). Integration yields

l61(t) — d2(B)|)* < [161(0) — &2(0)|I* = |16} — &3l

t € [0,T). In particular, if ¢? = ¢ then the solution is unique.

6 Relationship with Degenerate Sweeping Pro-
cesses
Kunze and Monteiro Marques [8] have proved the following theorems.

Theorem 6.1 Let A : dom{A) — 27 be a mazimal and strongly monotone
operator and for any t € [0,T], C(t) # ¢ C H be closed and convez set and
t — C(t) be Lipschitz continuous. If in addition the following conditions are
satisfied

a) C(0) is bounded or there exrists a function M : [0,00) — [0,00) which
maps bounded sets such that

|Az|} = sup{|y| : v € Az} < M(|z]) for z € dom{A4),

b) dom(A) N B.(0) is relatively compact for every r > 0 or C(t) N B.(0)
is compact for everyt € [0,T) and r > 0.

Then there exists a Lipschitz continuous function u : {0,T] — H, u(t) €
dom(A) a.e., such that for every up € dom(A) with Aug N C(0) # ¢

v(t) € Au(t)NC(t) a.e
and

—/(t) € Nogy(v(t)) ae in[0,7) (6.1)

13




Theorem 6.2 Let 4 : H — H be linear, bounded and self adjoint such that
(Az, 1) > Bl|z||? for z € H. Ift ~ C(t) is Lipschitz continuous where
t€[0,T]. C(t) C H is closed and conver and Aug € C(0), then (6.1) has a
unique solution which is Lipschitz continuous.

It may be observed that in some special cases Theorem 3.1 and Theorem 3.2
can be derived from Theorem 6.1 and Theorem 6.2. For example, if A is as
Dy or D, defined in Section 2, H = R and u is of C; class with z"(t) > ¢
for all t € R and fixed ¢ then Theorem 6.1 reduces to Theorem 3.1 provided
C(0) is bounded.

If we choose A = u' in Theorem 6.2 then u' satisfies the condition {u',u) >
Bllu])?, is linear and self adjoint. However v’ is bounded only almost every-
where and so Theorem 3.1 cannot be obtained as a special case of Theorem
6.2.
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