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Abstract
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semicontinuous, #-subdifferentiable proper functional in Banach spaces. The existence
and Lipschitz countinuity of J7-proximal mapping of a lower semicontinuous, #-sub-
differentiable proper functional are proved. By applying this notion, we introduce and
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sequences generated by our algorithm is discussed. Several special cases are also given.
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1. Introduction

In 1994, Hassouni and Moudafi [1] introduced a perturbed method for
solving a new class of variational inequalities, known as variational inclusions.
A useful and important generalization of the variational inclusions is called the
quasi-variational inclusion. Quasi-variational inclusions are being used as
mathematical programming models to study a large number of equilibrium
problems arising in finance, economics, transportation, optimization, opera-
tion research, and engineering sciences.

Adly [2], Huang [3], Ding [4,5], Ahmad and Ansari [6] have obtained some
important extensions of the results in [1] in various different directions. Re-
cently, Cohen [7] and Ding [8,9] have extended the auxiliary principle technique
to suggest and analyze an innovative and novel iterative algorithm for com-
puting the solution of mixed variational inequalities in reflexive Banach spaces.
Chang et al. [10] and Chang [11] have studied some classes of set-valued var-
iational inclusions with m-accretive operator and ¢-strongly accretive opera-
tors in uniformly Banach spaces.

lterative algorithms have played a central role in the approximation solv-
ability, especially of nonlinear variational inequalities as well as nonlinear
equations in several fields such as applied mathematics, mathematical pro-
gramming, mathematical finance, control theory and optimization, engineering
sciences and others. In general we cannot use resolvent operator or proximal
mapping technique for studying a perturbed algorithm for finding the
approximate solutions of variational-like inequalities.

In this paper, we define a new notion of J*-proximal mapping for a lower
semicontinuous, #-subdifferentiable, proper (may not be convex) functional on
Banach spaces. The existence and Lipschitz continuity of the J%-proximal
mapping of the functional are proved under suitable conditions in reflexive
Banach spaces. By using this notion, we introduce and study generalized
multivalued nonlinear quasi-variational-like inclusions in reflexive Banach
spaces and propose a proximal point algorithm for finding the approximate
solutions of our inclusions. The convergence of the iterative sequences gener-
ated by our algorithm is discussed. Several special cases are also discussed.

2. Preliminaries

Let £ be a Banach space with the dual space E*, {u,x) be the dual pairing
between u € E* and x € E and CB(E*) be the family of all nonempty closed
bounded subset of E*. H(...) is the Hausdorfl metric on CB(E™) defined by

H({A,B) = max {Supd(u,B), supd(4. v)} for all 4,8 € CB(E™).

ued el

where d{u, B) = inf,cpd{u, 1) and d(4,v) = inf,. 4 d(u, v).
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We extend the concept of y-subdifferentiability of a functional defined by
Lee et al. [12] in Hilbert spaces to a Banach space setting.

Letn: Ex E— Eand ¢ : E— RU{+ox}. A vector w* € E* is called an 4-
subgradient of ¢ at x € dom¢ if

W, n{y,x)) < ¢(y) — ¢(x) forally € E.

Each ¢ can be associated with the following #-subdifferential map ¢, ¢ defined
by

Sap(x) = { {w* € E* (w* n(y,x)) < ¢(v) — $(x) ¥y € £}, x € domg,
! 0, x ¢ dome.

Let us recall the following definitions.

Definition 2.1. Let 4 : E — CB(E*) be a set-valued mapping, J: E — E*,
g:E— E n:E xE— E be the single-valued mappings.

(1) A is said to be Lipschitz continuous with constant 4, = 0 1if
Hidx. 4y) < 24)lx — y|| for all x,y € E.

(2) J is said to be y-strongly monotone with constant x > 0 if
Ux — Jyop(x,v)) = alx =y forallx,y € E.

(3) #» is said to be Lipschitz continuous with constant t > 0 if

lpix, 3l < tllx —y| forallx,yekE.

{(4) g issaid to be k-strongly accretive (k € (0. 1)) if for any x. ¥ € E, there exists
J{x —y) € F{x — y) such that

(= p)gx — g 2kl — ¥l
where & : E — 2£7 is normalized duality mapping defined by

Flx) = {f € £ (£,5) = WL = ell} - for all x € E.

Some examples and properties of the mapping # can be found in [13].

Definition 2.2. Let £ be a Banach space with the dual space E,
¢:E— RU{+} be a proper, n-subdifferentiable (may not be convex)
functional, n: E x E — E und J . E — E* be the mappings. If for any given
point x* € £* and p > 0, there is a unique point x € E satisfying

(Jx —x*.nlyv.x)y + pdp(y) — pp(x) 2 0 for all y € E.
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The mapping x* — x, denoted by 0+ (x™) is said to be J"-proximal mapping of
¢. We have x* — Jx € pd,¢{x), it follows that

S (*) = (J + pB,¢) " (x¥),

Remark 2.1. If ¢:E - RU{+oc} is proper subdifferentiable and
R(y.x) =y —x for all x,y € E, then Definition 2.2 of J"-proximal mapping
coincides with the definition of J-proximal mapping (see [14]).

Let 7,4 : £ — CB(E*) be set-valued mappings. Let N :E* x E* — E*,
f:E—E* n:ExE—E and g:E — E be single-valued mappings. Let
¢:Ex E — RU{+oc} be such that for each fixed x € E, ¢(.,x) is a lower
semicontinuous, #-subdifferentiable functional on E (may not be convex) sat-
isfying g(E) N domd,¢(.,x) # ¢, where 3,¢(.x) is the n-subdifferential of
#{..x}. We consider the following generalized multivalued nonlinear quasi-
variational-like inclusion problem in Banach spaces (for short, GMNQVLIP):

Find x € E, u € T(x), v € A(x) such that g(x) € dom(&,¢(..x)} and

x) = N(w,v)only.glx)) = ¢lgx).x) — dly.x) forallyeE  (2.1)

Special cases:

(1) If E = H, is a Hilbert space and f(x) = 0, then problem (2.1) reduces to the
following generalized quasi-variational-like inclusion problem:
{ Find x € H.u € T(x),v € A{x) such that g(x) € dom(d,¢(.,x}) and
(N(u, v}, n(y, g(x))) = ¢lglx),x) — ¢(y,x) forallyeH.
(2.2)
Problem (2.2) is a variant form of the problem considered by Ding [15].
(2) If E = H, is a Hilbert space and f{x} = g(x), then problem (2.1) reduces to
the following generalized multivalued nonlinear quasi-variational-like
inclusion problem:
{ Find x € H,u € T(x},v € A(x) such that g(x) € dom(d,¢(..x)) and
(g(x) — N(w,v).n(y.g(x)) = ¢(glx).x) — ¢(y,x) forally< i
(2.3)
Problem (2.3) was introduced and studied by Salahuddin and Ahmad [16].
(3) If E = H, is a Hilbert space, f{x) =0, N{u,v) = u — v for all u,v € i and
T.4 : H — H are both single-valued mappings, then problem (2.1) reduces
to the following general quasi-variational-like problem:
{ Find x € H such that g(x) € dom(d,¢(.,x}) and
(T(x) ~ Alx).n(v.g(x)}) = plglx).x} — ¢ly.x) forallyecH.

Problem (2.4) was introduced by Ding and Lou [17].

(24




R Ahmad et al. | Appl. Math, Comput. 163 (2005) 295-308 299

(4) If £ = 17, is a Hilbert space, n(y,x) =y —x for all y,x € F, and f{x) =0,
N{u,v} = f(u) — P(v) for allu,v € H, where f, P : H — H are single-valued
mappings and ¢(x,y) = ¢(x) forallx,y € H,and foreachx € H, ¢(.,x) isa
proper convex lower semicontinuous functicnal, then problem (2.1} re-
duces to the following problem:

{ Find x € H,u € T{x),v € A(x) such that

{f ) = P(v),y — g(x) > dlg(x)) — (y) for all y € H. (2)

Problem (2.5) is called set-valued nonlinear generalized variational inclu-
sion problem which was introduced by Huang {3].

It is clear from these special cases that our problem (2.1) is & more general
unifying one, which is one of the main motivations for this paper.

Definition 2.3. A functional f : E x £ — R U {+cc} is said to be 0-diagonally
quasi-concave (in short 0-DQCV) in y, if for any finite subset {x,....x,} C E
and for any y =57 ix; with 24, 2 0and 37,4 = 1,

1<i<n

Lemma 2.1 [18]. Let D be a nonempty convex subset of a topological vector
space and f: D x D — RU{Loo} be such that

(i) for each x € D, y — f(x.y) is lower semicontinuous on each compact subset
of D,
(i) for each finite set {x,,...,x,} € Dand for each y = >""_ Aix; with 2; 2 0 and
Sode =1, ming ¢ flx, ¥) €0,
(i) there exists a nonempty compact convex subset Dy of D and a nonempty
compact subset K of D such that for each v& D\K, ithere is an
x € co{ Dy U {y}) satisfying f{x,y) > 0.

Then there exists ¥ € D such that f(x,5) <0 for all x € D.

Now we give some sufficient conditions which guarantee the existence and
Lipschitz continuity of the J"-proximal mapping of a proper functional on
reflexive Banach space.

Theorem 2.1. Ler E be a reflexive Banach space with the dual space E* and
D E—RU{+oc} be a lower semicontinuous, w-subdifferentiable, proper
Junctional which may not be convex. Let J 1 E — E* be y-strongly monotone with
constant 2 > 0. Let n: E x £ — E be Lipschitz continuous with constant © > 0
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such that nix,v) = —n(y,x} for all x,y € E and for any x € E, the function
h(y.x) = (x* —Jx,n(y,x)) is 0-DOCV in y. Then for any p >0, and any
x* € E*, there exists a unique x € E such that

(o —x* (v, x)) + pd(y) — pp(x) 20 forall y € E. (2.6)
That is x = J*(x*} and so the J'-proximal mapping of ¢ is well defined.

Proof. Forany J . E = E*, n: Ex E — E, p> 0 and x* € E*, define a func-
tional f: E x E —» R {+o0} by

Sx) =" —Jdxn(y,x) + plx) — pp(v) forallx,y € E.

Since J, #(.,.) are continuous mappings and ¢ is lower semicontinuous, we
have that for any y € E, x — f(y,x} is lower semicontinuous on £. We claim
that f(y,x) satisfies the condition (ii) of Lemma 2.1. If it is false, then there
exists 4 finite subset {.)0,.... 3} € E and

m (3

Xo =3 Ay with 2 > 0. > i =1 such that
i i=1

i=1

x* — Ixo n(y,x0)) + pdlxg) — pdp(y) >0 foralli=1,2,....m.

Since ¢ is #-subdifferentiable at xq, there exists a point f(: € £* such that

pd(3i) = pplxn) = p{f n(yixo)y foralli=1.2,....m.

It follows that

o* —Jxo — pf n(ynxe)y >0 foralli=1,2,....m. (2.7)

On the other hand, by assumption h{y,x) = &* —Jxo — pf. q{y.x)) is
0-DQCYV in y, we have

Z {x —Jxo — pfer n(y.x)) <0

Tgigim

which contradicts the inequality (2.7). Hence f(v,x) satisfies the condition (ii)
of Lemma 2.1.

Now we take a fixed y € dom. Since ¢ is g-subdifferentiable at ¥, there exist
a point /X € E* such that

() = 6(3) = (FX.nlx.7)) for all x € E.
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Hence we have
SO} = " — Jeon(3, %)) + p(x) — po(5)
2P = Jxn(3,0)) + (4% =I5, n(5,x)) + P n(x,3))
Bﬂﬁﬁﬂf—ﬂhﬂ%ﬂuw+pWﬁMW—ﬂ
=HP—xMMW—XH—TWVH+HWH+MU?ML

=G I pIAE and K = {xC £ 5 x) <) Then
Dy = {3} and K are both weakly compact convex subset of E and for each
x & E\K, there exists a Y€ Go(DyU{p}) such that f(#.x) > 0. Hence all
conditions of Lemma 2.1 are satisfied. By Lemma 2.1 there eXISts an ¥ € £
such that f(y.3) <0 for all y € E, that is

WX —x* (3. 3)) + PE(V) — pd(3) =0 for all VEE.

Now we show that % is a unique solution of problem (2.6). Suppose that
X1,%2 € E are arbitrary two solutions of problem (2.6). Then we have

W= X% n(v,5)) + o) — pelx) 0 for all y € E, (2.8)
Un‘fwmn»+pﬂw-pmnnﬂ)hrﬂyeE- (2.9)
Taking y = x; in (2.8) and Y =x In{2.9) and adding these Inequalities, we have
(= x*, (e, 1)) + (i —x* n(x,x0) = 0. (2.10)

Since y{x,y) = —p(y, x) for all x,y € E and J is n-strongly monotone with
constant > (0, we have

D!”.Il'] — JCg”z £ (JJ(] “sz, t;r(x,,xg)) < O,

and hence we must have x, — x2. This completes the proof. O

Theorem 2.2, fer E pe 4 reflexive Banach space with the dual space E*,
JIE— E* s H-strongly monotone continuous mapping with constant x> (),
p:FE—=RU {+o0} be a lower semicontinuous, n-subdifferentiable proper func-
tional. Let 5 : Ex E + E he Lipschitz continuous with constant + > 0 such that
7(x,y) = —n(y, x) Jor all x,yc £ and Jor any given x € E, the Junctional
Ay, x) = (x* - Jx, nyv.x)) is 0-DOCV in ¥, p >0 is an arbitrary constant, Then
the S"-proximal mapping JS”"’ of & is t/x-Lipschitz continuous.

Proof. By Theorem 2.1, the J "-proximal mapping J::“’ of ¢ is well defined. For
any given x*,y* ¢ £* let x — Jot(x*y, y = Jo(y*), then x* — Jx € pC.(x)
V¥ —Jy € pd.o(y).

Hence

O = e, 1)) = PP(x) — pd(u) for all u € E, (2.11)

[}
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* = Jv,n(u,y)y 2z pd(y) — pd{u) forallucE. (2.12)
Taking u = y in (2.11) and & = x in (2.12) and adding this inequalities

(x* —Jx?’?(y’x» + (y* _Jya n(xay» =z 0.

Since # is Lipschitz continuous with constant © > 0, #{x,y) = —#(y.x) and J is
f-strongly monotone with constant « > 0, we have

g ('T(st)ay* - x*>
< {ny,x). y* = 2*) <l 0illly™ — 5|l
lly — xf|ly* —x*||

(Jy — Jx, ’7(%)5)}
ally — x|’

which implies that J¢ is 7/« Lipschitz continuous. [

3. Proximal point algorithm
Definition 3.1. The mapping N : E* x E* — E* is said to be

(i) Lipschitz continuous with respect to the first argument, if there exists a
constant 4y, > 0 such that

”N(”l% ) - N(l{g, )H < /-‘N] “ul - u2||

for all w; € T(x)), uy € T{x2) and xy,x2 € E.
(ii) Lipschitz continuous with respect to the second argument, if there exists a
constant Ay, > 0 such that

IV w) — N o) € 2y,

o — o2 )
for all v, € A(x;), vz € 4{xz) and x;,x» € E.
The following Lemma plays an important role in proving our main result.

Lemma 3.1 [19]). Let E be a real Banach space and F :E —+ 25" be the
normalized duality mapping. Then, for any x,y € £,

[+ 31 < el + 240, + )

Jor all fix+¥) € Flx+y).




R Ahmad et al. | Appl. Math. Comput. 163 (2005) 295-308 303
Proof. For any x,y € E and j(x +v) € #(x + y), we have
x4 ¥IP = (o +pjlx +3)) = jlx +2) + 0 jlx )
<SP + 117G+ 2P + Ol +90)
= Y + flx + 51 + i+ )
it follows that

b+ yli* < |x||2 + 20y, jx+ )
for all j(x + ¥) € #(x +y). This completes the proof. L[l

We first transfer the GMNQVLIP (2.1) into a fixed point problem.

Theorem 3.1. (x,u,v) is a solution of GMNQVLIP (2.1) if and only if (x.u, )
satisfies the following refation:

glx) = I I{J(g(x)) — pf (x) + pN(w, )}, (3.1)
where x € E, u € T(x), v € A(x), p > 0 and J7" = (J + pe, @ (., x)) 7" is the Ji-
proximal mapping of ${.,x).

Proof. Assume that x € E, u € T{x), v € A{x) satisfies relation (3.1), ie.,
glx) = Jo? I (glx)) — pf(x) + pN (1, 0]}
Since J{‘;""’ A= (J 4 p2,0(..x)) ", the above equality holds if and only if
J{glx)) — pf{x) + pN(u,v) € J{g{x)) + pOrp(g(x). x).

By the definition of y-subdifferential of ${.,x)}, the above relation holds if and
only if

p(v,x) — p(g(x). %) = (N(w.v) = f(x),n(y, glx})) forall ye£.

Hence we have
(f(x) — N, v), n(v,8(x))) = ¢lelx).x) — ¢y.x) forall yek,

i.e. {x,u,v) is a solution of the GMNQVLIP (2.1). This fixed point formulation
\ enables us to suggest the following proximal point algorithm. [2

Algorithm 3.1, Let 7.4 : E — CB(E*) be set-valued mappings, / : £ — E*,
N:E*<xE* —E* n:ExE—E, J:E—~E* be single-valued mappings
and g:E—E be the single-valued mapping with g{£)=F. Let
¢ Ex E— RU{+oc} be a lower semicontinuous, #-subdifferentiable proper
functional on E satisfying g(£) N domd,¢(.,x) # ¢. For any xo € E. sy € T{xo),
vy € A(xy). By g{E) = E, there exists a point x; € £ such that
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glx) =IO (g(xp)) — pf(xa) + PN (ti0, vo) }-
By Nadler [20], there exists #) € T(x;) and v; € A(xy} such that
s — wof| < (1 + DH{T(x\), T{x0)),
llor = ool < (1 + DH{A(x1), 4{x0)).

Let

glx)) = ST (g()) — pf (x1) + pN (w01}

continuing the above process inductively, we can define the following iterative
sequences {x,}. {u,} and {v,} for solving GMNQVLIP (2.1) as follows:

glxnr) = J7P I (x)) — pf () + N (o va)},

€ T i =l < (11 g JH(Tla0). T30,

tn € A5, [t — il < (1 +%)H(A<xn-l),f4(xn)), (32)

1
n=0,1,2....,

where p > 0 is a constant.

Theorem 3.2. Let T,A:E — CB(E™) be Lipschitz continuous mappings with
Lipschitz constants /r and /.4, respectively. Let g 1 E — E and f 1 E — E* be
Lipschitz continuous mappings with Lipschitz constants i, and 7y, respectively
and g is k-strongly accretive (k € (0. 1)) satisfving g(E) =E. Letn 1 Ex E — E
be Lipschitz continuous with Lipschitz constant t© > 0 such that n(x.v) = —n(y,x)
for all x,y € E and for each given x € E, the function h(y.x) = (3™ —Jx, 5(y,x))
is 0-DQCV in y. Let N : E* x E* — E* be sy, -Lipschitz continuous in the first
argument and  Ay,-Lipschitz  continuous in  the second argument. Let
¢:Ex E— RU{+oc} be such that for each x € E. ¢{..x) is a lower semicon-
tinwous, n-subdifferentiable, proper functional satisfving g{(x) € dom(0,¢(..x)).
Let J:E — E* is ng-strongly monotone with constant « > 0 and /i-Lipschitz
continuous. Suppose that there exists a constant p > 0 such that for eachx, v € E,
x> € E*

[/t — It N el {3.3)
and the following conditions are satisfied.

2R 3

K <1,
2 2<<
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2k + 3)o — 41205252} + 2022
0<p<\J( Jo ) 2) 22000 (3.4)

82(27) + (v 2r + iy i)’

Then the iterative sequences {x,}, {u,} and {v,} generated by Algorithm 3.1

converge strongly to x, u and v, respectively and (x,u,v) is a solution of

GMNQVLIP (2.1).

Proof. We can write
Porst = 5ll” = llglomen) = 8(0) = g6t + £(%) = Kot + I
By Lemma 3.1, we have
eret = lI* < gnr) = £} * = 2g(xnrt) — g80) +
= Xy J(Xne1 = Xa)) (3.3)
By Algorithm 3.1, we have
gxnat) = ST (g(x,)) — pf (o) + PN (140, 0,)].
Hence we have
lgGener) = gle)l” = 5 0 (g(x)) — pf (xa) + PN {n, 0,)]
S O (gl)) — pf (xami)
+ N (1, v )

b 2), by the assumptions and Theorem 2.2, we

have

Sllgenr) — gl
< P (g () = pf () + pN (it )]
= I I @ (X)) = pf (t) + PN (e v )]
MR (1)) — pf () + PN ttyer. B )
S (g1 )) = p (amt) + PN (1, 5y )]

(g(x’l)) - pf(x") + pN(un» l?,,)} - {J(g(xn—l)) - pjl(xn—l)

+ PNy O+ PO (g, 1)) — pf ()
+ pN(“M Ly Un |)) - J‘}'!M"X" ;](J(g(xn—l )) - p.f‘(xn—l)
+ pN{(ttp_1, 0, l))”

; 48 0x)) — o () + pN (1t )}

/AN

//\
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2 2
— {J(gla-1)) = 1)+ PNy, v )N+ 2 ln = X |

272 5 , 7 5
< _&T“J(g(xn)) —J{glx, )"+ 4p ;“f(xn) — f o)l

5

.
+ 4!)2 &_2 HN(”ns Un) — N(”m vn—l) + N (ty, Un—l)

Nt ) 1P 2 = %01 (3.6)
By the Lipschitz continuity of J and g, we have
I (g)) = I (gD < 4180} = glxa)ID) < 2yl = el BT
By the Lipschitz continuity of f, we have
) — f )| € 210 — Xoa |- (3.8)

By the Lipschitz continuity of N{.,.) in both the arguments, Algorithm 3.1,
Lipschitz continuity of T and 4, we have

WV (b, U0} — Nty 821} + N (thn, Up1) — N{ttn-1, Un1) |
L[|V (i, Un) — N{t. Un—l)H + HN(”m V1) = N(ttp-1, g )H

g /A-Nlﬂvn — Up-1 H + ’:~Nl “un — Uy H

. (1 +%>H(A(x,,),A(xn_1)) + A, (1 + %)H(T(xn), T(xs 1))

. - 1
% (;‘Nl A+ /-N;/vA) (1 + ;) Hx,, — Xn—1 “ (39)

By (3.6)(3.9), we obtain

2 4'[2 . Tz ) T .. . PO
g (xa1) — gl < [—xz* (4 7) + 8;)3&—2/,} + sza—z (Any 7 + Ay 1)

N )
X (l+n) +2,u'i\ ||x,,+—x,,_|||“

41'2 RS T2 .2 P .82 1 : 3
= [ " {(274,)+ 892;5 (z._; + (4w, Ar + /.NE/.AY(I +}Z) ) + 2

% e — x| (3.10)

Since g : E — E is k-strongly accretive, by (3.5), we have

erHl _x"“'_’ g “g(xnﬁ—l) - g(xn)uz - 2<g(xn+l) - g(xn) + Xppt — xn-j(xnfl - X,,))

4Tl 1.2 B} 'Cz . " N L. 02 1 : )
< [ . (/uf"./.;,) + 8p- el (/f + (A A+ A da)” (1 + ;) ) + 2;1‘}

1y — 27 = 20K 4+ 2)||aer = xall
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1t foliows that

, [ 422l 802 + Udr + iwia) {1+ 1 /)
Hxn+l _xn” < ‘ -

(2K + 3)a? (2K + 3)o?
2”20{2
B m] el = Oplbes =t 1P (31D)

o _ Ae2(A222) + 802025 + (b iy + dn,2a) (1 4 1/m)) + 20882
" (2K + 3)a? '

Let

) A0(22) + 822 (A} + Ui, Ar + Ay 2a)) + 20848
B (2K + 3)o?

clearly #, — @ as n — oc. Condition (3.4) implies that 0 < # < 1, and so
0 < 0, < 1 when n is sufficiently large. It follows from (3.11) that {x,} is a
cauchy sequence in £. Let x, — x. Since the mappings T and 4 are Lipchitz
continuous, it follows from (3.2) that {u,} and {v,} are also cauchy sequences,
we can assume that u, — u and v, — v. Since J. g, f and N(.,.} are Lipschitz
continuous mappings and by Algorithm 3.1, we have

glx) = I T (g(x)) — pf(x) + pN(u, v)}.
Now we will prove that u € T(x) and v € A(x). Infact, since u, € T{x,) and

d(u,, T(x)) < max {d(u,,, T(x)), sup d(T(x,,),y)}

veT{x)
< maX{ sup d(z, T(x)), sup d(T(xn)a,v)}
seTixa) yel{x)

= D(T(x,,), T(x))'
We have

d{u, T(x)) < [l — v || + d{aty, T(x)) < [l — || + D(T{x,). Tix))
<

|
et — wall + 2rllx, — x|j — O(r — <),
which implies that d{u, T(x)) = 0. Since T(x) € CB(&), it follows that u € 7(x).

Similarly, we can prove that v € 4(x). By Theorem 3.1. (x, .t} is a solution of
GMNQVLIP (2.1). This completes the proof., []
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