KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 552 (FIELDS AND GALOIS THEORY)

SEMESTER 071 (FALL 2007)

DR. JAWAD ABUIHLAIL

- **1. DESCRIPTION:** Field Extensions; The Fundamental Theorem; Splitting Fields and Algebraic Closure; Finite Fields; Separability; Cyclic, Cyclotomic, and Radical Extensions; Structure of Fields: Transcendence Bases.
- **2. Prerequisite:** Math 345 (Math 450 is recommended)
- <u>3. TEXTBOOK</u>: Hungerford, T., *Algebra*, Graduate Texts in Mathematics 73, Springer-Verlag, New York-Berlin (1980).

4. FURTHER READING:

- 1) J. Rotman, Galois theory, Springer (1998).
- 2) I. Stewart, *Galois Theory*, 3rd edition, Chapman & Hall/CRC, Boca Raton, FL (**2004**).

5. Grading Policy:

Exam I (Take-home)	200
Exam II (Take-home)	200
Research Project	100

Detailed Syllabus

Section	Title	Week(s)	MATERIAL
I	Field Extensions	1 & 2	Finite & Infinite Dimensional
			Extensions, Algebraic &
			Transcendental Extensions,
			Ruler & Compass
			Constructions
II.	The Fundamental	3 & 4	Galois Extensions,
	Theorem		Fundamental Theorem of
			Galois Theory, Symmetric
			Rational Functions
III.	Splitting Fields, Algebraic	5 & 6	Splitting Field of a Polynomial,
	Closure and Normality		Algebraic Closure, Separable
			Polynomials, Separable
			Extensions, Generalized
			Fundamental Theorem, The
			Fundamental Theorem of
			Algebra
IV.	The Galois Group of a	7 & 8	Galois Groups of Polynomials
_	Polynomial		
V.	Finite Fields	9	Galois Fields, Prime Subfields
VI.	Separability	10 & 11	Purely Inseparable Elements,
			Purely Inseparable Extensions,
			Primitive Elements, Primitive
			Element Theorem
VII.	Cyclic Extensions	12 & 13	Cyclic & Abelian Extensions
VIII.	Cyclotomic Extensions	14	Cyclotomic Extensions &
			Cyclotomic Polynomials
IX.	Radical Extensions	15 & 16	Radical Extensions, Solvability
			by Radicals, General Equations
			of Order <i>n</i>