King Fahd University of Petroleum & Minerals Department of Mathematical Sciences

MATH-533: Complex Variables I Spring Semester 2004 (032)

Dr. Jawad Abuihlail

Final Exam

Name: ID:

Q1. (10 Points - Suggested Time: 10 Minutes) State if each of the following statements is TRUE or FALSE:

- 1. Any analytic function $f(z): \Omega \to \mathbb{R}$ (where $\Omega \subseteq \mathbb{C}$ is a region) is constant on Ω .
- 2. The radius of convergence for $\sum_{n=1}^{\infty} \frac{n! z^n}{n^n}$ is $\frac{1}{e}$.
- 3. $\oint_{|z-a|=1} \frac{1}{(z-a)^n} dz = 0$ for all $n \ge 2$.
- 4. $\oint_{|z|=1} |z-1| |dz| = 4.$
- 5. The inversion $T(z) = \frac{1}{z}$ maps lines not passing through the origins onto circles.
- 6. The residue of $\Gamma(z)$ at z = -n for n = 0, 1, 2, ... is $\frac{(-1)^n}{n!}$.
- 7. The equation $az + b\overline{z} + c = 0$ $(a, b, c \in \mathbb{C})$ represents a straight line.
- 8. (\mathbb{C}_{∞}, d) , where d is the chordal metric, is a complete metric space.
- 9. If $f(z): \Omega \to \mathbb{C}$ is analytic, where and Ω is a region, then

$$\oint_{\gamma} f(z)dz = 0,$$

where $\gamma \subset \Omega$ is a cycle.

10. The infinite product $\prod_{n=1}^{\infty} \left(1 + \frac{(-1)^{n+1}}{(n+1)\ln(n+1)}\right)$ converges absolutely.

Q2. (20 Points - Suggested Time: 30 Minutes) Give a counter example to each
of the following <u>false</u> statements:	

1. If f(z) is meromorphic but not entire on \mathbb{C} , then $e^{f(z)}$ is meromorphic.

2. If $u(x,y): \mathbb{R}^2 \to \mathbb{R}$ is harmonic, then $g(x,y) = \nabla u \bullet \nabla u$ is harmonic.

- Q3. (40 Points Suggested Time: 75 Minutes) Prove $\underline{any \ 5}$ of the following statements.
 - 1. $f(z) = \frac{1}{z}$ is not uniformly continuous in the region $\Omega := \{z \in \mathbb{C} : 0 < |z| < 1\}$.

2. If f(z) is an analytic function with a zero of order h at z_0 , then $f(z) = g(z)^h$, where g(z) is analytic near z_0 and satisfies $g'(z_0) \neq 0$.

3. $f(z) = \sqrt{z^2 - \frac{1}{z}}$ can be defined as a single-valued continuous function outside the unit disk.

4. The image of the closed region

$$\Omega:=\{z=x+iy\in\mathbb{C}:|x|\leq\frac{1}{2},y\geq0\}$$

under the mapping $T(z)=e^{2\pi iz}$ is the closed unit disk minus the origin.

5. Any analytic function $f(z): \Omega \to \mathbb{C}$,

$$\Omega := \{ z \in \mathbb{C} : R_1 < |z - a| < R_2 \}, R_2 > R_1 > 0,$$

has a Laurent's series expansion $f(z) = \sum_{n=-\infty}^{\infty} A_n (z-z_0)^n$, where $C := C(a, \rho)$ is any circle with center at z = a, radius $R_1 < \rho < R_2$ and

$$A_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta.$$

6. If $\{f_n\}_{n=1}^{\infty}$ is a sequence of analytic functions $f_n: \Omega_n \to \mathbb{C}$, where $\Omega_n \subseteq \Omega_{n+1}$ for all $n \geq 1$ and $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f(z) on every compact subset of $\Omega := \bigcup_{n=1}^{\infty} \Omega_n$, then f(z) is analytic on Ω and $\{f'_n\}_{n=1}^{\infty}$ converges uniformly to f'(z) on every compact subset of Ω .

7. A series $\sum_{n=1}^{\infty} z_n$ with $\lim_{n \to \infty} \frac{|z_{n+1}|}{|z_n|} = \rho$ converges absolutely, if $\rho < 1$ and diverges if $\rho > 1$.

Q4. (10 Points - Suggested Time: 15 Minutes) Consider the series $\sum_{n=1}^{\infty} z^n (1-z)$.

1. Prove that the series is absolutely convergent to f(z) = z for |z| < 1.

2. Prove that the series converges uniformly to its sum for $|z| \le \rho$, where $0 < \rho < 1$ and explain why the series does not converge uniformly for $|z| \le 1$.

 $\mathbf{Q5.}$ (20 \mathbf{Points} - $\mathbf{Suggested}$ $\mathbf{Time:}$ 30 $\mathbf{Minutes})$ Evaluate the following integrals:

$$1. \oint\limits_{|z|=4} \frac{\sin z}{z(z^2 - \pi^2)} dz$$

$$2. \oint\limits_{|z|=5} \frac{e^z}{z^2(z-1)} dz$$

$$3. \oint\limits_{|z|=5} \frac{\cos z}{z^3 + 9z} dz$$

 $4. \int_0^\infty \frac{\sin x}{x} dx$