King Fahd University of Petroleum & Minerals Department of Mathematical Sciences

MATH-533: Complex Variables I Spring Semester 2004 (032)

Dr. Jawad Abuihlail

Third Major

Name:	ID:

Q1. (10 Points - Suggested time: 10 minutes). State if each of the following statements is true or false:

1. The number of zeros of $P(z) = z^{87} + 36z^{57} + 71z^4 + z^3 - z + 1$ inside the unit circle is 3 roots.

2.
$$\oint_{|z|=1} |z-1| |dz| = 8.$$

3.
$$\left| \oint_{|z-1|=1} \frac{e^z}{z+3} dz \right| \le 2\pi e^2$$
.

- 4. $f(z) = \frac{e^z 1}{z}$ has a simple pole at $z_0 = 0$.
- 5. Let p(z) and q(z) be analytic functions with $p(z_0) \neq 0$ and $q(z_0) = 0$. If $q'(z_0) \neq 0$, then $f(z) := \frac{p(z)}{q(z)}$ has a simple pole at z_0 with $\underset{z=z_0}{\operatorname{Res}} f(z) = \frac{p(z_0)}{q'(z_0)}$.

Q2. (20 Points - Suggested time: 20 minutes) Give a counter examples to each of the following <u>false</u> statements:

1. If $f(z): \Omega \to \mathbb{C}$ is a function with $\int_C f(z)dz = 0$ (Ω is an open disk and $C \subset \Omega$ is a circle), then f(z) is analytic in Ω .

2. Every simply connected region $\Omega \subset \mathbb{C}$ is connected.

- Q3. (40 Points Suggested time: 40 minutes). Prove $\underline{\text{any four}}$ of the following statements:
 - 1. Let f(z) be a function analytic inside and on the unit circle. Suppose that |f(z) z| < |z| on the unit circle. Show that $|f'(\frac{1}{2})| \le 8$ and that f(z) has precisely one zero inside the unit circle.

2. Every polynomial $P(z) \in \mathbb{C}[z]$ with degree $n \geq 1$ has at least one complex root.

3. If f(z) is analytic in a rectangular region R (defined by $a \le x \le b$ and $c \le y \le d$), then $\int_{\partial R} f(z) dz = 0$.

4. $\int_{\partial D} \frac{1}{1+z^{2n}} dz = \frac{\pi}{n \sin(\frac{\pi}{2n})}$ (for n = 1, 2, 3, ...), where $D = \{z \in \mathbb{C} : |z| < 2 \text{ and } Im(z) > 0\}$.

5. Let p(z) and q(z) be analytic functions with $p(z_0) \neq 0$ and $q(z_0) = 0$. Show that z_0 is a zero of $q(z_0)$ with order h if and only if $f(z) := \frac{p(z)}{q(z)}$ has a pole with order h at z_0 .

Q4. (30 Points - Suggested time: 30 minutes). Evaluate each of the following integrals:

$$1. \oint_{|z|=4} \frac{z^2 - \pi z}{\sin z} dz$$

2.
$$\oint_{|z|=2} \frac{2\sin(z^3)}{(z-1)^4} dz$$

 $3. \int_{-\infty}^{\infty} \frac{x^2 + x + 1}{x^4 + 1} dx$

GOOD LUCK