King Fahd University of Petroleum & Minerals Department of Mathematical Sciences

MATH-533: Complex Variables I Spring Semester 2004 (032)

Dr. Jawad Abuihlail

Second Major: Take-Home

Name: ID:

Solve the first 4, or any 5 of the following problems:

Q1. Show that for n = 2, 3, 4, 5, ...

$$S_n := \sin \frac{\pi}{n} \cdot \sin \frac{2\pi}{n} \cdot \dots \cdot \sin \frac{(n-2)\pi}{n} \cdot \sin \frac{(n-1)\pi}{n} = \frac{n}{2^{n-1}}.$$

Q2. Let $\Omega \subseteq \mathbb{C}$ be a region and $f: \Omega \to \mathbb{C}$ be such that the differential of f exists and is different from 0 at $z_0 \in \Omega$. Show that f is conformal at z_0 if and only if

$$\lim_{r \to 0} e^{-i\theta} \frac{f(z_0 + re^{i\theta}) - f(z_0)}{|f(z_0 + re^{i\theta}) - f(z_0)|}, \ r > 0$$

exists and is independent of θ .

Q3. Consider the linear fractional transformation

$$f(z) = \frac{z - i}{z + i}.$$

What is the image of the real line \mathbb{R} (respectively $\mathbb{R} \cup \{\infty\}$) under the map w := f(z)?

Q4. Find a linear fractional transformation which carries

$$C_1 := \{ z \in \mathbb{C} : |z| = 1 \} \text{ and } C_2 := \{ z \in \mathbb{C} : \left| z - \frac{1}{4} \right| = \frac{1}{4} \}$$

into cocentric circles. What is the ratio of the radii?

- **Q5.** Find a conformal mapping that takes the half plane on and to the left of the line $y = mx \ (m > 0)$ onto the unit disk.
 - Q6. Show that any conformal mapping of the unit disk onto itself is of the form

$$h(z) = e^{i\theta} \frac{z - \beta}{1 - \overline{\beta}z}, \ |\beta| < 1.$$

GOOD LUCK