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Abstract A similarity analysis of a nonlinear wave
equation in elasticity is studied; in particular, one with
anharmonic corrections. The symmetry transformation
give rise to exact solutions via the method of invariants.
In some cases, graphical figure of the solutions are pre-
sented. Furthermore, we consider some cases wherein
the velocities of the longitudinal and transversal plane
waves are variable. Finally, a brief discussion on how
a symmetry analysis on a perturbation of the elasticity
equation can be pursued.
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1 Introduction

The linear theory of elasticity is based upon the as-
sumption that the strain tensor ui j depends linearly on
the displacement vector ui as

ui j = 1

2
(ui, j + u j,i ). (1.1)

The elastic energy E in this case is given by

E =
∫ (

λ

2
u2

i i + μu2
i j

)
dr (1.2)

where r is the position vector of the point xi and λ and
μ are Lame’s coefficients. If the displacement in the
elastic medium is not small, the nonlinear strain tensor
takes the form

ui j = 1

2
(ui, j + u j,i + uk,i uk, j ). (1.3)

Moreover, the elastic energy up to third-order takes
the form

E =
∫ (
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)
dr (1.4)
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