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Résumé

Les mathématiques offrent un cadre convenable pour raisonner rigoureusement sur les

systèmes et phénomènes réels. Par exemple, en génie logiciel, les méthodes formelles

sont parmi les outils les plus efficaces pour détecter les anomalies dans les logiciels.

Plusieurs systèmes réels sont stochastiques par nature dans le sens où leur comporte-

ment est sujet à un aspect d’incertitude. La représentation de ce genre de systèmes

requiert des modèles stochastiques comme les processus de Markov étiquetés (LMP), les

processus de Markov décisionnels (MDP), etc. Cette thèse porte sur la quantification

de la différence entre les systèmes stochastiques. Les contributions majeures sont :

1. une nouvelle approche pour quantifier la divergence entre les systèmes stochas-

tiques basée sur l’apprentissage par renforcement,

2. une nouvelle famille de notions d’équivalence qui se situe entre l’équivalence par

trace et la bisimulation, et

3. un cadre plus flexible pour la définition des notions d’équivalence qui se base sur

les tests.

Le résultat principal de la thèse est que l’apprentissage par renforcement, qui est une

branche de l’intelligence artificielle particulièrement efficace en présence d’incertitude,

peut être utilisé pour quantifier efficacement cette divergence. L’idée clé est de définir

un MDP à partir des systèmes à comparer de telle sorte que la valeur optimale de cet

MDP corresponde à la divergence entre eux. La caractéristique la plus attrayante de

l’approche proposée est qu’elle est complètement indépendante des structures internes

des systèmes à comparer. Pour cette raison, l’approche peut être appliquée à différents

types de systèmes stochastiques. La deuxième contribution est une nouvelle famille de

notions d’équivalence, que nous appelons K-moment, qui est plus forte que l’équivalence

par trace mais plus faible que la bisimulation. Cette famille se définit naturellement à

travers la cöıncidence de moments de variable aléatoires (d’où son nom) et possède une

caractérisation simple en terme de tests. Nous montrons que K-moment fait partie d’un

cadre plus grand, appelé test-observation-equivalence (TOE), qui constitue la troisième

contribution de cette thèse. Il s’agit d’un cadre plus flexible pour la définition des

notions d’équivalence basé sur les tests.



Abstract

Modelling real-life systems and phenomena using mathematical based formalisms is

ubiquitous in science and engineering. The reason is that mathematics offer a suitable

framework to carry out formal and rigorous analysis of these systems. For instance,

in software engineering, formal methods are among the most efficient tools to identify

flaws in software. The behavior of many real-life systems is inherently stochastic which

requires stochastic models such as labelled Markov processes (LMPs), Markov decision

processes (MDPs), predictive state representations (PSRs), etc. This thesis is about

quantifying the difference between stochastic systems. The main contributions are:

1. a new approach to quantify the divergence between pairs of stochastic systems

based on reinforcement learning,

2. a new family of equivalence notions which lies between trace equivalence and

bisimulation, and

3. a refined testing framework to define equivalence notions.

The important point of the thesis is that reinforcement learning (RL), a branch

of artificial intelligence particularly efficient in presence of uncertainty, can be used

to quantify efficiently the divergence between stochastic systems. The key idea is to

define an MDP out of the systems to be compared and then to interpret the optimal

value of the MDP as the divergence between them. The most appealing feature of the

proposed approach is that it does not rely on the knowledge of the internal structure

of the systems. Only a possibility of interacting with them is required. Because of

this, the approach can be extended to different types of stochastic systems. The second

contribution is a new family of equivalence notions, K-moment, that constitute a good

compromise between trace equivalence (too weak) and bisimulation (too strong). This

family has a natural definition using coincidence of moments of random variables but

more importantly, it has a simple testing characterization. K-moment turns out to

be part of a bigger framework called test-observation-equivalence (TOE), which we

propose as a third contribution of this thesis. It is a refined testing framework to define

equivalence notions with more flexibility.
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elle j’ai fait une mâıtrise dont je suis très fier. Mourad Debbabi est un chercheur
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Chapter 1

Introduction

January 1987,

Yakima, Washington, USA.

A cancer patient went to the hospital to receive his habitual treatment

through Therac-25, a system used for the treatment of cancer by ad-

ministering regularly a dose of radiation to a specific part of the body

in order to hopefully kill the malignant tumor. When the treatment

was underway, an error paused the machine, which indicated that the

dose was not administered yet. Unfortunately, the technician repeated

the treatment. An overdose was administered and the man died three

months later. It was the sixth deadly incident due to an undetected soft-

ware bug in the Therac-25 system. Therac-25 is considered one of the

most devastating computer related engineering disasters to date [32].

Nowadays, software and hardware systems are controlling our lives. They are con-

trolling the temperature inside our fridges, the toys of our children, and the remote

control of our TVs. They are needed in supermarkets to prepare our bills, in banks to

transfer our salaries, and in hospitals to monitor our heart pace if we are sick. Thanks

to them, we are exploring space, we are finding new cures for diseases, and we are aware

of everything that happens in the whole world. The more dependant we are on these

systems, the more important is the need for them to function correctly. However, all

such systems are designed and developed by human beings and hence they can include

errors and faults that prevent them form behaving as intended. These errors can have

a variety of effects with different levels of inconvenience to the user. Some have only

a negligible effect on the system functionality and may lie undetected for a long time

and some have extremely serious consequences such as the one mentioned above. The

presence of such systems in safety-critical applications coupled with their increasing
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complexity makes the verification task more challenging.

The most rigorous tool to detect flaws is formal verification. Formal verification is

the process of proving or disproving the correctness of a system with respect to a cer-

tain formal specification which represents the desired system behavior. Typically, this

process consists in representing the real system and its specification using an abstract

mathematical formalism and then comparing them in some form or another. Exam-

ples of popular mathematical formalisms used to model systems are timed automata,

process algebra, transition systems, etc. In this thesis, we use the transition systems

approach to model systems. A transition system describes an application as a set of

states and transitions. A state represents a picture of the system at some moment

while the transitions represent state changes in the application. For example, a coffee

machine can very well be modelled through a set of states and transitions. Before any

interaction with the user, the coffee machine is in an “idle” state. When the user in-

serts a coin, the machine makes a transition to a new state which can be called “coin

inserted” or “waiting for selection”. Then, the user chooses the type of coffee he wants

and the machine switches to another state which can be called “preparing coffee” and

so on.

As described, the coffee machine is a deterministic system since one can predict its

behavior, in particular the next state, with certainty. However, the behavior of many

real-life processes is inherently stochastic. The word stochastic is used to describe

subjects that contain some element of random behavior. For a system to be stochastic,

one or more of its parts should have randomness associated with them. For example,

any game based on dice defines a stochastic behavior since the next state depends on

the result of the throw of the dice. The models to represent such systems usually

quantify such randomness using probabilities1. Historically, traces of gambling such

as the perfectly shaped dice found in Egyptian excavations show that there has been

an interest in quantifying the ideas of probability for millennia. Exact mathematical

foundations, however, arose much later with Huygens (17th century) and Bernouilli (18th

century). Since then, probability theory became a major field of mathematics and

entered almost all scientific fields.

1.1 Motivation

In software engineering, probabilities are very useful to study the non-functional as-

pects of system behaviors such as performance and reliability. Indeed, when designing

1In this thesis, we use the words probabilistic, randomized and stochastic as synonyms.
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a new system or software, it is important to investigate the average response time or

the probability that a certain failure occurs. This will allow to produce more real-

istic models. More generally, performance and reliability properties are particularly

important to investigate for the so-called shared resources systems (or concurrent sys-

tems) where a varying number of components compete for the same resources. Typical

examples are transportation and processing systems such as telecommunication net-

works, manufacturing systems, distributed systems including all types of modern data

processing machines. The consequences of concurrency are mutual interference, delays

to contention and varying service quality during different periods of time in addition to

transmission errors and resource failures. An analysis of these and similar properties

requires that some form of information about the statistical behavior of the system and

the probability of the occurrence of relevant events is put into the model. The concept

of stochastic process allows to accurately model and investigate these properties and

phenomena.

In artificial intelligence too, stochastic models are useful to represent dynamical

systems. A dynamical system is one whose state changes over time often with a certain

amount of uncertainty. Typically, in studying dynamical systems one is interested in

one of two objectives: learning and controlling. Learning a dynamical system consists

in estimating, more or less precisely, the parameters of the model. This will allow

one to understand the inner-working of the environment and figure out the patterns

behind it. A good example is how human gene patterns can be learned from raw DNA

sequences. Controlling dynamical systems, on the other hand, consists in finding an

optimal strategy (or policy) of behaving given a goal task. An example is an autonomous

robot navigating in a room and trying to find the shortest path to the exit door.

There exist several stochastic formalisms that can be used to represent stochastic

systems. The choice of the model depends on the characteristics of the system to be

modelled. To mention only some of these characteristics, the state space can be discrete

or continuous, the transition probabilities leaving a state may sum up to exactly 1 or

less than 1, the state space can be observable or partially observable, the task can be

controllable or uncontrollable, etc.

In real scenarios, very often one needs to confront systems and/or models to see

whether they define the same behavior. It is a notable feature of concurrency theory

that there are many different notions of process equivalence e.g. trace equivalence,

bisimulation, etc. These notions differ in their distinguishing capabilities. Hence, two

processes can be considered equivalent by a “weak” notion such as trace equivalence

whereas a stronger notion such as bisimulation can distinguish between them. Let

us consider a program verification problem where the goal is to check whether an
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implementation conforms to its pre-established specification. The implementation is

the final product or the constructed physical device whereas the specification should

represent in some form or another the desired properties of the implementation. For

non-probabilistic systems, one usually expects equivalence between the two, and most

of the time this equivalence is chosen to be bisimulation. When verifying stochastic

systems, however, the task is more challenging due to their quantitative nature. In

such situations, it has been observed that the comparison between the program and

the specification should not be based on equivalences: one reason is that probability

values often come from approximations and hence a slight difference in the probabilities

between two systems should not be necessarily interpreted as non equivalence. A more

appropriate approach would be to focus on “how close” the systems are. This implies

a notion of distance or divergence2 between stochastic systems.

In artificial intelligence too, the relative distance between a system and its model

indicates how good the latter is. A model, by nature, is an abstraction of the real

system. Hence, the model may deviate more or less from the original behavior. To

which level the model deviates from the original behavior is an important issue to

assess the accuracy and fidelity of the model representation. In particular, one may

wonder to which level an optimal policy of a model remains optimal in the real system.

Furthermore, it is very common that one needs to confront two dynamical systems to

see whether they define the same behavior. For example, in the presence of two robots,

each one trying to find the exit door in a different room, it is interesting to figure out

which robot has the simpler task.

A divergence notion between processes will assign a number to every pair of processes

giving an indication of how far they are from each other. A distance of zero means that

the processes are equivalent and processes that are very “close” will yield a smaller

distance than processes that are far apart. The value of the divergence itself is usually

not relevant; however the derived relation is of particular importance.

Analyzing processes is more complex in the stochastic case than in the deterministic

one. The reason is that a stochastic process may behave differently on different trials

with same input. This will happen more likely when the entropy of the stochastic

process is high. Entropy is a notion from information theory [47]. Intuitively, a state

of a process is said to have a high entropy if it can make transitions to several next

states. The task is further complicated when the internal structure of the stochastic

process is not known. This case is very common in real scenarios. For instance, a

client who wants to verify a software built by a third party will proceed without any

knowledge of the internal structure of the software. One way of dealing with such

2A divergence can be defined as a pseudo-distance.
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situations is via a testing framework. In such a framework, the process is viewed as a

black-box with a hidden internal structure and an interface consisting of buttons that

can be pressed. A test is viewed as an algorithm for how to experiment the black-

box. It specifies which button should be pressed and when. In their famous paper on

probabilistic transition systems [30], Larsen and Skou have defined a test framework

that corresponds to “probabilistic” bisimulation. Their framework requires the ability

to take multiple copies of any state in order to experience a different test on each copy.

The problem with this replication capability is that it is recursive; a test executed on

one copy can in turn require to take multiple copies of next states. The need to maintain

an arbitrary number of copies of states is an obstacle to automatization and has been

an argument against bisimulation which is thus considered too strong, even for non-

probabilistic processes. Trace equivalence does not require any replication capability

and hence defines a simpler testing framework. However, for many applications it does

not discriminate enough.

1.2 Contributions

The three main contributions of this thesis are:

1. a new approach to quantify the divergence between pairs of stochastic systems

based on reinforcement learning,

2. a new family of equivalence notions, called K-moment which lies between trace

equivalence and bisimulation, and

3. a refined testing framework, called TOE, to define equivalence notions.

The main result of this thesis is an algorithm to estimate divergences between sto-

chastic systems based on reinforcement learning (RL). RL is a branch of machine learn-

ing concerned with planning and learning in probabilistic environments. The environ-

ment is typically formulated as a Markov decision process (MDP) which is a standard

formalism to describe multi-stage decision making. Any MDP has an optimal policy of

behaving which is guaranteed to get the maximum cumulative reward, called also the

optimal value. The objective of RL is to find this optimal policy. The field of RL has

become one of the most active research areas in machine learning and artificial intelli-

gence. It has developed strong mathematical foundations and impressive applications

in robotics, control theory, simulation, etc. The choice of using RL is motivated by

mainly two reasons. The first is that, while classical verification techniques can deal
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with processes of about 1010 states [40], RL algorithms can do a lot better. For example,

the TD-Gammon program [56] deals with more than 1020 possible states. The second

is that RL techniques are particularly efficient in the absence of a complete knowledge

of the problem. Recall that in several realistic scenarios, the models of the stochastic

processes to be compared are unknown.

The key idea of our approach is to define a Markov decision process out of the

processes to be tested and to interpret the optimal value of this MDP as a divergence

between the processes. This optimal value and the corresponding policy can then be

estimated by any RL algorithm. In a very simple scenario, the approach can be used to

estimate the divergence between stochastic systems of the same type. However, since

no assumptions are made about the models of these processes, the comparison can be

carried out between two different types of models or systems, for instance between a

labelled Markov process (LMP) and a probabilistic labelled transition system (PLTS)

or between a partially observable Markov decision process (POMDP) and a predictive

state representation (PSR). The algorithm does not need more than the possibility to

test the stochastic processes via a testing framework.

A divergence is best defined with respect to an equivalence notion which is, in partic-

ular, induced by the zero distance. Hence, one can define trace equivalence divergence,

bisimulation divergence, etc. The algorithm we propose can be tailored to any such

divergences but with only one condition; the equivalence notion should come with a

testing framework that does not use recursive replication. This might suggest that the

proposed approach will work only for weak equivalences and any strong equivalence

such as bisimulation will not fit. Here comes the second contribution of the thesis.

We propose a new family of equivalences called K-moment which constitutes a good

compromise between trace (too weak) and bisimulation (too strong). This family is

called K-moment because it is based on moments coincidence of random variables. An

interesting aspect of K-moment is its simple testing formulation that uses replication

but not recursively. Indeed, the tester is allowed to take multiple copies of the current

state but when a transition to the next state occurs, all these copies are discarded from

memory.

K-moment turns out to be part of a bigger class of equivalences we call test-

observation-equivalence (TOE for short), which we propose as a third contribution of

this thesis. Typically, when equivalence notions are defined via a testing framework, the

main element to specify is the test language from which tests are generated. However,

there is another element that can play an important role, that is: how observations are

grouped. Indeed, generally, only some aspects of observations are significant. Group-

ing of “similar” observations will allow focusing on important aspects of observations.
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TOE is an improved technique to define equivalence notions by putting more emphasis

on the observation function which indicates how observations are grouped. All TOEs

including K-moment are recursive replication free and consequently they do fit in the

RL based algorithm to compute the divergence between stochastic processes.

1.3 Thesis Organization

The organization of the thesis is depicted in Figure 1.1.

In the next chapter, we present the necessary background on stochastic processes

from the point of view of formal verification. We recall the definitions of probabilistic

transition systems, in particular, labelled Markov processes (LMPs). We make a brief

survey of the probabilistic equivalence notions such as trace equivalence and bisimula-

tion by giving their testing and logical characterizations. Finally, we present related

work concerning metrics for stochastic processes.

Chapter 3 is a survey of the field of reinforcement learning. It introduces the ba-

sic notions such as MDP, policy, and value function and then goes through the best

known techniques of RL including dynamic programming (DP), Monte Carlo (MC),

and temporal difference learning (TD).

In Chapter 4, we present the main contribution of the thesis, that is, how to for-

mulate the problem of estimating the divergence between stochastic processes using

RL. In this chapter, the stochastic processes are assumed to be LMPs and the diver-

gence notion we define is related to trace equivalence. The main ideas are exposed

through a one-player stochastic game and we provide the formal proofs along with the

experimental results.

In Chapter 5, we introduce the family of K-moment equivalence notions and we

discuss it from different point of views, namely, moments coincidence, logical, and

testing.

In Chapter 6, we present the test-observation-equivalence (TOE) framework which

is composed of a generic test grammar and a generic observation function. The first part

of the chapter describes in detail these two components. The second part is dedicated

to showing that our proposed approach to quantify the divergence between stochastic

processes (Chapter 4) can be tailored to any equivalence notion defined through the

TOE framework and we provide the necessary formal proofs. Finally, we give a TOE
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Chapter 1
Introduction

Chapter 2
Probabilistic Verification

Chapter 3
Reinforcement Learning

Chapter 4
Trace Divergence

Chapter 5
K-moment

Chapter 6
Test-Observation-Equivalence

Chapter 7
Dynamical Systems

Chapter 8
Conclusion

Figure 1.1: Thesis organization
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definition of the equivalence notions presented in the previous chapters and in the light

of this, we organize them in a hierarchy based on their distinguishing capabilities.

In Chapter 7, we make a survey of the stochastic models used in artificial intelligence

such as POMDPs, HMMs, PSRs, etc. We classify them with respect to criteria such

as observability and controllability. Then, we show how our proposed approach can

be used to quantify the divergence between POMDPs and we indicate how it can be

extended to the other stochastic models. Finally, we present the results of experimental

analysis carried out on POMDP benchmarks.

Chapter 8 contains a short summary of the contributions and a discussion on future

work.

In Appendix A, we present part of the process we carried out to tune the parameters

of the selected RL algorithm, namely, Q-learning.

In Appendix B, we detail two use cases of HMM that can benefit from our proposed

approach. The first is about automatic speech recognition and the second is about

DNA sequence analysis.



Chapter 2

Background on Probabilistic

Verification

2.1 Introduction

This thesis is about probabilistic processes. In this introductory chapter, we present

the necessary background on probabilistic processes from the point of view of formal

verification. Later, in Chapter 7, we complete this view by presenting stochastic models

used in artificial intelligence. The first section of the chapter is dedicated to necessary

definitions of probabilistic transition systems. The following section focuses on equiva-

lence notions for probabilistic processes. The last section is a survey of the state of the

art regarding metrics and distances for probabilistic processes.

2.2 Transition Systems

The term “transition system” originates from viewing the processes as a set of states

and a set of transitions between these states. In formal verification, one can alterna-

tively describe a process in a syntactic form using a process algebra. However, both

descriptions have the same expressive power. In this thesis, we restrict ourselves to the

transition systems view and we will not discuss their syntactic description.
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Figure 2.1: A deterministic and a non-deterministic labelled transition systems

2.2.1 Labelled Transition Systems (LTS)

The labelled transition system (LTS) formalism represents the operational behavior of

a system. From an operational standpoint, a system can be seen as a set of states

(processes, configurations, etc.) and a set of transitions between these states. A transi-

tion requires the occurrence of an action (or event). Hence, an execution of a program

can be seen as a sequence of states and actions, that is, a path through the LTS.

The LTS description of a process emerges from its interaction with the environment.

Indeed, the process and its environment are synchronized on actions : if the process

is in state s and the environment chooses an action a, which is enabled (possible) in

s, then the process makes an a-labelled transition to the next state. In practice, the

process can make an “internal” transition (typically called τ) which is not synchronized

with the environment and hence cannot be observed by an external observer. In this

thesis, we focus only on observable actions.

Definition 2.1. An LTS is a tuple (S, s0,A, T ) where:

• S is the set of states (processes).

• s0 is the initial state.

• A is the set of actions (events or labels), and

• T : S×A×S is a transition relation such that (s, a, s′) means that running action

a on state s may yield a transition to state s′.

An LTS can be deterministic or non-deterministic. In a deterministic LTS, the exe-

cution of an action results in a transition to only one state whereas in a non-deterministic

LTS, the execution of an action may lead to one of several possible next states. P1 in

Figure 2.1 is an example of a deterministic LTS whereas P2 is a non-deterministic one

because running action b in state 1 may lead to state 2, 3, or 4.
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Figure 2.2: Labelled transition systems

2.2.2 Probabilistic Labelled Transition Systems (PLTS)

Probabilistic labelled transition systems (PLTS) are an extension of LTS where transi-

tions are supplied with probabilities in [0, 1]. Probabilities are introduced in transition

systems in order to quantify non-determinism. As mentioned above, non-determinism

occurs when running an action from a state can lead to two or more next states and for

which no information is available as to which one of them is chosen. For example, in

Figure 2.2(a) there is non-determinism at state 1. This non-determinism is quantified

in Figure 2.2(b) by assigning to each transition a probability in [0, 1]. Notice that the

edge of the graph is labelled by the action and the probability between brackets. We

will often drop the probability when it is 1.

Definition 2.2. A PLTS is a tuple (S,A, P ) where:

• S is the set of states.

• A is the set of actions.

• P : S × A × S → [0, 1] is a transition probability function such that ∀ a ∈ A,

s ∈ S, P (s, a, s′) represents the probability to run action a from state s and end-

up in state s′ and
∑

s′∈S
P (s, a, s′) = 0 or 1.

If the transition probabilities for a given state sum up to zero (
∑

s′∈S P (s, a, s′) = 0)

we say that the state s is terminal. Every state s in S determines a process having

s as its initial state. Once an action a is chosen by the environment, the transition

probability function P will be used to select which transition to take. Hence the choice

of the action is left to the environment. This is called a reactive model. It is the model
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Figure 2.3: An example of a labelled Markov process

we use throughout this thesis. A description of other models (generative and stratified)

can be found in [59].

2.2.3 Labelled Markov Processes (LMP)

A labelled Markov process is a PLTS where the state space can be continuous (rather

than discrete) and where the probability distributions may sum up to less than 1.

By allowing the state space to be continuous, an LMP can be used to model a larger

set of systems than a PLTS. Indeed, several systems, in particular physical devices,

involve parameters with continuous values such as temperature, speed, distance, etc.

Also, unlike a PLTS, an LMP allows the probability distribution to sum up to less

than 1. Probabilities from the same state with the same action summing up to 1 means

that the execution of the action will necessarily yield a transition. A sum of 0 means

that the state is terminal. When this sum is strictly between 0 and 1, it means that

the action may be refused (with the remaining probability). For example, if the sum

of the transition probabilities in a state s after action a is 4
5
, then with probability

1
5
, the action is not accepted. There is another interpretation for the fact that the

total probability out of a state is strictly between 0 and 1. The process is considered

underspecified ; this is useful when one is interested in a notion of preorder between

processes (see Chapter 2 in [13] for more details).

Definition 2.3. A labelled Markov process with action set A is a tuple (S, s0,Σ, τ),

where S is the set of states, which is assumed to be an analytic space, s0 is the initial

state, and Σ is a Borel σ-field on S, and ∀a ∈ A,

τa : S × Σ −→ [0, 1]

is a transition sub-probability function.
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The transition sub-probability µa(x,C) represents the probability of the system,

starting in state x and executing action a, of making a transition into one of the states

in C. More formally, a transition sub-probability function is defined as follows:

Definition 2.4. A transition sub-probability function on a measurable space (X,Σ) is

a function µ : X × Σ −→ [0, 1] such that for each fixed x ∈ C, the set function

µ(x, ·) : Σ −→ [0, 1]

is a sub-probability measure, and for each fixed C ∈ Σ the function

µ(·, A) : X −→ [0, 1]

is a measurable function.

In this thesis we consider only countable (discrete) LMPs. Hence, we will use the

following definition of LMP.

Definition 2.5. An LMP is tuple (S, s0,A, P ) such that:

• S is the set of states.

• s0 is the initial state.

• A is the set of actions, and

• P : S × A × S → [0, 1] is a transition probability function such that for states s

and s′ and action a, P (s, a, s′) (noted also Ps→s′(a)) represents the probability to

run action a on state s and end up in state s′ and

0 ≤
∑

s′∈S
Ps→s′(a) ≤ 1.

We use the notation Ps→C(a) for the probability that an a-labelled transition from

s ends in C (C ⊆ S):

Ps→C(a) =
∑

s′∈C
Ps→s′(a).

2.3 Equivalences and Characterizations

In several practical scenarios of formal verification, one is confronted with the problem

of checking whether two processes are equivalent. For example, if one process represents
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Figure 2.4: A testing machine

the specification of a system and a second process represents its implementation, then

one expects equivalence between the two. A variety of equivalence notions between

probabilistic processes have been proposed in the literature with different discriminating

power: two processes could be equivalent according to a notion while they are non-

equivalent according to a stronger notion. In this section, we present equivalence notions

for probabilistic processes and we discuss their testing and logical characterization. But

before, let us introduce testing and logical characterizations.

Testing a process can be viewed as interacting with a testing machine such as the

one in Figure 2.4. This testing machine is a black box equipped with buttons, one for

each action. Executing an action can be thought of as pressing a button. The button

can go down which corresponds to the acceptance of the action (noted X) or it can

stay in the same position which corresponds to the failure of the action (noted ×). For

the sake of more clarity, the success observation following action a is noted aX while

its failure is noted a×. Hence, the execution of a test t on a process may result in

an observation e out of a set of possible observations, noted Ot. Each test t defines a

probability distribution over Ot. Definition 2.7 specifies how the observation set and the

probability distribution on observations are defined for trace equivalence. The testing

characterization of an equivalence notion requires a test grammar from which tests can

be generated. Then, two processes are “equivalent” if, and only if, they yield the same

probability distribution on observations for any test.

Equivalence between stochastic processes can also be characterized using a modal

logic [21]. A modal logic is a language to generate formulae which manipulate modalities

such as possibility, existence, necessity, etc. A formula can be seen as a property that

might or might not be satisfied by a process. Given a suitable modal logic, two processes

are equivalent according to a notion, if and only if, they satisfy the same formulae of the

logic. What is interesting with logical characterization is that if we want to verify that

two processes are not equivalent, we only have to find a formula that distinguishes them.

Moreover, this formula gives information about why the processes are not equivalent.
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Figure 2.5: Not trace equivalent processes

2.3.1 Trace Equivalence

A trace is a sequence of actions of the form τ = a1a2. . .an. The empty sequence is

noted ε. In a non-probabilistic setting, two processes are trace equivalent if, and only

if, they accept the same set of traces. For example, making an abstraction of the

probabilities values, processes P1 and P2 of Figure 2.5 accept the same set of traces

{ε, a, aa, ab, ac, aac, aca}. Probabilistic trace equivalence [23], however, requires that

the probabilities (to accept each trace) are the same for both processes. To define trace

equivalence, we need to extend the transition probability function to traces.

Definition 2.6. Let L = (S, i,A, P ) be an LMP, s a state in S, τ = a1a2. . .an a trace

in A∗, and X a subset of S (X ⊆ S):

Ps→s′(ε) :=

{

1 if s = s′

0 otherwise

Ps→s′(τ) :=
∑

t∈S
Ps→t(a1. . .an−1)Pt→s′(an)

Ps→X(τ) :=
∑

s′∈X
Ps→s′(τ).

Let PL(τ) denotes Pi→S(τ), that is, the probability to successfully perform trace τ from

the initial state of L.

Two states s1 and s2 are trace equivalent if, and only if, ∀ τ ∈ A∗,

Ps1→S(τ) = Ps2→S(τ).

The probabilities P P1(τ) and P P1(τ) to accept these traces on P1 and P2 of Figure 2.5

are given in Table 2.1. It is easy to see that P1 and P2 are not trace equivalent since they

have different probabilities to accept trace aac : P P1(aac) = 1
4

whereas P P2(aac) = 1
6
.
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τ ε a aa ab ac aac aca

P P1(τ) 1 1 1
2

1
2

1
2

1
4

1
8

P P2(τ) 1 1 1
2

1
2

1
2

1
6

1
8

Table 2.1: Probabilities P P1(τ) and P P2(τ) in the example of Figure 2.5.

In trace equivalence, a test t is a sequence of actions of the form t = a1.a2.. . . .an
where a1, a2, . . . , an are elements of A. Testing trace equivalence consists in interacting

with the testing machine in Figure 2.4. The execution of a test t on a process may result

in an observation e having the form: e = aX
1 a

X
2 . . .a×k or e = aX

1 a
X
2 . . .aX

k where k ≤ n. The

set of all observations following a test t is noted Ot where O is an observation function.

For example, Oa.b = {a×, aXb×, aXbX}. Each test t defines a probability distribution

over Ot.

Let Qs
t (e) be the probability of observing the observation e after running test t on

state s. For example, in Figure 2.2(b), Qs0
a.a.a(a

XaXaX) = 3
4
. Given a state s, each test

t defines a probability distribution Qs
t on observations. In particular,

∑

e∈Ot

Qs
t (e) = 1.

More formally, the testing characterization of trace is based on the following definition.

Definition 2.7. The test language for trace equivalence is defined as :

Ttrace t ::= ω | a.t

where ω is a dummy test that always terminates with success; test a.t consists in exe-

cuting action a and, in case of success, proceeding with test t. The observation function

O is defined inductively as follows :

• Oω = {ωX}

• Oa.t = {a×} ∪ {aXe | e ∈ Ot}.

The probability distribution on observations Qs
t is defined as :

• Qs
ω(ω

X) = 1

• Qs
a.t(a

×) = 1 − Ps→S(a)

• Qs
a.t(a

Xe) =
∑

s′∈S Ps→s′(a)Q
s′
t (e) where e ∈ Ot.
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For example, in Figure 2.5, QP1
a.a.c.ω(a

XaXcX) = 1
4
, whereas QP2

a.a.c.ω(a
XaXcX) = 1

6
.

Although a trace and a test have the same definition (a sequence of actions), they are

used differently. A trace τ is either accepted or refused whereas a test t yields a set of

observations Ot. Hence, with testing we have the following theorem.

Theorem 2.8. [30] Two LMPs L1 and L2 are probabilistic trace equivalent if and only if

they yield the same probability distributions on observations for any test of the grammar

Ttrace.

As of the logical characterization, we define the modal logic Ltrace and we prove that

it characterizes trace equivalence.

Definition 2.9.

Ltrace : F ::= tt | 〈τ〉p

where τ ∈ A∗ and p ∈ [0, 1]. tt is satisfied by any state and 〈τ〉p is satisfied by any state

that accepts trace τ with probability at least p.

Theorem 2.10. Two states s1 and s2 are trace equivalent if and only if they satisfy

the same formulae of Ltrace.

Proof. Straightforward since a state s that accepts trace τ with probability Ps→S(τ) = p

satisfies any formula 〈τ〉q such that q ≤ p.

2.3.2 Bisimulation Equivalence

With trace equivalence, one can only observe the set of traces accepted from a state.

However, there exist other observable properties that can further distinguish processes.

For example, in Figure 2.5 the two processes P1 and P2 accept the same set of traces,

but in P1 after running action a the resulting state does not accept all actions a, b,

and c, whereas P2 does. Hence, an external observer can distinguish between these two

processes. The main idea of bisimulation equivalence is that two processes are equivalent

if and only if they exhibit the same behaviour for an external observer1. For this reason,

it is called also observational equivalence. Larsen and Skou [30] adapted this notion to

probabilistic processes and called the obtained notion probabilistic bisimulation.

Definition 2.11. [30] Let (S, s0,A, P ) be a countable LMP. An equivalence relation ≡

on S is a bisimulation if

1Bisimulation for non-probabilistic processes has been first introduced by Milner [39].
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s ≡ s′ ⇒ ∀ a ∈ A. ∀ C ∈ S/≡ . Ps→C(a) = Ps′→C(a)

where S/≡ is the set of bisimulation equivalence classes and Ps→C(a) is the probability

to run action a on state s and then end-up in a state of the set C.

Two states of S are bisimilar if there exists a bisimulation that relates them.

Larsen and Skou showed that probabilistic bisimulation can be characterized by a

testing scenario [30]. Their test language has the following syntax:

Definition 2.12. [30] The grammar of bisimulation testing is:

TLS : t ::= ω | a.t | (t1, . . . , tn)

where tests ω and a.t are the same as in Ttrace while test (t1, . . . , tn) consists in making

n copies of the current state and then executing test ti on the ith copy for i = 1, . . . , n.

The observation function O is recursively defined as follows :

• Oω = {ωX}

• Oa.t = {a×} ∪ {aXe | e ∈ Ot}

• O(t1,... ,tn) = Ot1 × . . .×Otn .

The probability distribution on observations is :

• Qs
ω(ω

X) = 1

• Qs
a.t(a

×) = 1 − Ps→S(a)

• Qs
a.t(a

Xe) =
∑

s′∈S Ps→s′(a)Q
s′
t (e) where e ∈ Ot

• Qs
(t1,...,tn)((e1, . . . , en)) =

n∏

i=1

Qs
ti
(ei) where ei ∈ Oti .

Theorem 2.13. [30] Two processes L1 and L2 are probabilistic bisimilar if and only if

they yield the same probability distributions on observations for any test of TLS.

This test grammar corresponds to interacting with the testing machine of Figure 2.6

equipped with a button for each action and a replication button. When pressed, the

replication button creates a new copy of the current state.
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a
1
 a
2
 a
3
 Replicate

a
m


Figure 2.6: Testing machine for bisimulation

• P1

a

• 1

b[ 1
3
] c[ 2

3
]

• 2 • 3

• P2

a[ 1
2
] a[ 1

2
]

• 1

b[ 1
3
] c[ 2

3
]

• 2

b[ 1
3
] c[ 2

3
]

• 3 • 4 • 5 • 6

• P3

a[ 1
3
] a[ 2

3
]

• 1

b

• 2

c

• 3 • 4

Figure 2.7: Labelled transition systems

In the context of labelled transition systems, Hennessey and Milner [17] proposed

a modal logic, called HML which characterizes (non-probabilistic) bisimulation. The

syntax of Hennessey-Milner logic is:

HML : F ::= tt | ¬F | ∧i∈N Fi | 〈a〉F

where 〈a〉F is satisfied by a process that can make an a-transition to a process satisfying

F , ¬F represents negation, and ∧i∈N Fi represents conjunction. Probabilistic bisimula-

tion for LMPs, surprisingly, is characterized by a simpler logic (L0) due to Desharnais

et al. [8]. The syntax of L0 is:

L0 : F ::= tt | F1 ∧ F2 | 〈a〉p F

where a state satisfying 〈a〉p F means that it can jump to a state satisfying F with a

probability at least p.

Processes P1 and P2 of Figure 2.7 are bisimilar and neither of them is bisimilar to

P3. Indeed, P1 and P2 satisfy the formula 〈a〉1(〈b〉 1
3
tt ∧ 〈c〉 2

3
tt) whereas P3 does not

satisfy it. On the other hand, the test t = a.(b.ω, c.ω) of test grammar TLS will lead

to different probability distributions on observations between P1 and P2, on one side,

and P3 on the other side. Indeed, QP1
t (aX(bX, cX)) = QP2

t (aX(bX, cX)) = 2
9
, whereas

QP3
t (aX(bX, cX)) = 0.

Reasoning about traces in the context of process algebras has been first introduced

by Hoare [18]. Hoare described also other semantics based on traces such as failure
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and readiness. These semantics suggest other equivalence notions that are finer than

trace equivalence and can be directly defined using traces. In the following sections,

we present probabilistic versions of these notions, namely, ready equivalence, failure

equivalence, Barb acceptance equivalence, and Barb failure equivalence. In order to

be consistent in our illustration, we define these notions in the same way as trace and

bisimulation; that is, we try to view them from the logical and testing point of view

in addition to their main definitions. Most of the material we present in the following

sections is the result of our own investigation.

2.3.3 Ready Equivalence

Ready equivalence [18] is a finer equivalence than trace. In a non-probabilistic setting,

two processes are ready equivalent if and only if they can run trace τ and then end

up in a state which accepts the same set of actions {a, b, c}. For example, process P1

in Figure 2.7 can perform trace τ = a and then end in a state which accepts the set

{b, c, d}. For probabilistic processes, ready equivalence [23] requires that both processes

perform trace τ with the same probability and then end up in a state accepting the

same set of actions.

Definition 2.14. Let s be a state in S. The set of actions enabled in s is defined by:

Can(s) := {a ∈ A | ∃s′ ∈ S ∧ Ps→s′(a) > 0}.

Definition 2.15. Let R : S ×A∗ ×P(A) → [0, 1] be the ready function which, given a

state s, a sequence of actions τ and a set of actions X ∈ P(A)2, returns the probability

that a state s performs trace τ successfully and ends up in a state which accepts the set

of actions X:

R(s, τ,X) :=
∑

{s′∈S |Can(s′)=X}
Ps→s′(τ).

Two states s1 and s2 are ready equivalent if and only if ∀ τ ∈ A∗,∀X ∈ P(A),

R(s1, τ,X) = R(s2, τ,X).

For example, processes P1 and P2 of Figure 2.5 are not ready equivalent since they

differ in several ready function values (Table 2.2).

Ready equivalence can be characterized by the following modal logic (the proof

follows).

2P(A) represents the powerset of the set of actions A.
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Definition 2.16.

Lready : F := 〈τ〉p φ tt

φ := ∧i∈Nai

where 〈τ〉p φ tt is satisfied by any state which accepts trace τ with probability at least p

and then ends in a state satisfying φ while a1 ∧ a2 ∧ . . . ∧ an is satisfied by a state s if,

and only if, {a1, a2, . . .an} = Can(s).

Theorem 2.17. Two states s1 and s2 are ready equivalent if and only if they satisfy

the same formulae of Lready.

Proof. ⇒. The proof is by contradiction. Suppose that s1 and s2 do not satisfy the

same set of formulae of Lready, then it is sufficient to find a trace τ and a set of actions X

such that R(s1, τ,X) 6= R(s2, τ,X). Let f = 〈τ〉p a1 ∧ a2 ∧ . . . ∧ ak tt a formula of Lready
and suppose, w.l.o.g., that it is satisfied by s1 but not by s2. Let X = {a1, . . . , ak}. By

Definition 2.16, we have
∑

{s′∈S |Can(s′)=X}
Ps1→s′(τ) ≥ p

which by Definition 2.15 implies that R(s1, τ,X) ≥ p. On the other hand, s2 2 〈τ〉p a1∧

a2 ∧ . . . ∧ ak tt implies that
∑

{s′∈S |Can(s′)=X}
Ps2→s′(τ) < p.

Hence, R(s1, τ,X) > R(s2, τ,X) which implies that s1 and s2 are not ready equivalent.

⇐. The proof is by contradiction. Suppose that s1 and s2 are not ready equivalent,

then it is sufficient to prove that s1 and s2 do not satisfy the same set of formulae of

Lready. Let τ be a trace and X = {a1, . . . , ak} a set of actions such that R(s1, τ,X) 6=

R(s2, τ,X) and assume, w.l.o.g., that R(s1, τ,X) = p > R(s2, τ,X). Then, the formula

〈τ〉p a1 ∧ a2 ∧ . . . ∧ ak tt is satisfied by s1 but not by s2.

Let us discuss the testing characterization of ready equivalence. As illustrated in the

previous section, the property that a state s performs trace τ with probability p can be

tested. Unfortunately, the property that the set of actions {a1, a2, . . . , an} are enabled

in a state s cannot be tested. Indeed, the property that action a is enabled in a state

(regardless of the probability) is not testable. Take, for example two states: one state

accepting action a with probability 1 and the other accepting a with probability 10−80.

Action a is enabled in both states. However, in the latter state, it is almost impossible

to figure it out through testing. This indicates that ready equivalence as defined above

does not have a testing characterization. In Chapter 6, we present a variant of ready

equivalence which is testable.
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(τ,X) (ε, {a}) (a, {a, b}) (a, {c}) (aa, {c}) (ab, ∅) (ac, {a})

R(P1, τ,X) 1 1
2

1
2

1
2

1
2

1
2

R(P2, τ,X) 1 0 0 1
2

1
2

1
2

(τ,X) (aac, ∅) (aca, ∅) (a, {a, b, c})

R(P1, τ,X) 1
4

1
8

0

R(P2, τ,X) 1
6

1
8

1

Table 2.2: Ready function values for processes P1 and P2 of the example of Figure 2.5

(zero probabilities are discarded).

2.3.4 Failure Equivalence

Failure equivalence [23] is very similar to ready equivalence, but instead of considering

the set of actions accepted after a given trace, it considers the set of actions refused.

Definition 2.18. Let F : S × A∗ × P(A) → [0, 1] be the failure function which given

a state s, a sequence of actions τ and a set of actions X, returns the probability that a

state s performs trace τ successfully and ends up in a state where all actions in X are

not enabled:

F (s, τ,X) :=
∑

{s′∈S |Can(s′)∩X=∅}
Ps→s′(τ).

Two states s1 and s2 are failure equivalent if and only if ∀ τ ∈ A∗,∀X ∈ P(A),

F (s1, τ,X) = F (s2, τ,X).

The values of F (P1, τ,X) and F (P2, τ,X) for any τ ∈ A∗ and X ∈ P(A) of Fig-

ure 2.5 are given in Table 2.3.

Failure equivalence can be characterized by the following modal logic.

Definition 2.19.

Lfailure : F := 〈τ〉p φ tt

φ := ∧i∈N¬ai

where 〈τ〉p φ is satisfied by any state which accepts trace τ with probability at least p

and then end up in a state satisfying φ while ¬a1 ∧¬a2 ∧ . . . ∧¬an is satisfied by a state

s if and only if {a1, a2, . . .an} ∩ Can(s) = ∅.

Theorem 2.20. Two states s1 and s2 are failure equivalent if and only if they satisfy

the same formulae of Lfailure.
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(τ, A) (ε, ∅) (ε, {b}) (ε, {c}) (ε, {b, c})

F (P1, τ, A) 1 1 1 1

F (P2, τ, A) 1 1 1 1

(τ, A) (a, ∅) (a, {a}) (a, {b}) (a, {c}) (a, {a, b})

F (P1, τ, A) 1 1
2

1
2

1
2

1
2

F (P2, τ, A) 1 0 0 0 0

(τ, A) (aa, ∅) (aa, {a}) (aa, {b}) (aa, {a, b})

F (P1, τ, A) 1
2

1
2

1
2

1
2

F (P2, τ, A) 1
2

1
2

1
2

1
2

(τ, A) (ac, ∅) (ac, {b}) (ac, {c}) (ac, {b, c})

F (P1, τ, A) 1
2

1
2

1
2

1
2

F (P2, τ, A) 1
2

1
2

1
2

1
2

(τ, A) (ab,−) (aac,−) (aca,−)

F (P1, τ, A) 1
2

1
4

1
8

F (P2, τ, A) 1
2

1
6

1
8

Table 2.3: Failure function values for processes P1 and P2 of the example of Figure 2.5

(zero probabilities are discarded).

The proof is very similar to the proof of Theorem 2.17.

In reactive processes, ready and failure equivalences have the same distinguishing

capabilities. Indeed, it is easy to show that if R(s1, τ,X) 6= R(s2, τ,X) then there exists

Y = S\{X} such that F (s1, τ, Y ) 6= F (s2, τ, Y ).

2.3.5 Barb Acceptance Equivalence

As described above, ready and failure equivalences consider the set of actions accepted

or refused after the end of a trace. Barb equivalences [35], however, consider information

about acceptance and refusal at intermediate states.

Definition 2.21. A Barb trace Btr ∈ (A∗ × P(A∗)) has the form
(
(a1, a2, . . . , an), (X1, X2, . . . , Xn+1)

)

where ai ∈ A and Xi ∈ P(A) ∀ i.

In Barb acceptance equivalence, a state s accepts a Barb trace Btr =
(
(a1, a2, . . . , an),

(X1, X2, . . . , Xn+1)
)

with probability p it can perform trace τ = a1, a2, . . . , an with proba-

bility p such that in intermediate states it has respectively acceptance setsX1, X2, . . . , Xn+1.
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P
a[ 1

3
]

a[ 1
3
]

a[ 1
3
]

• 1
b[ 1

2
]

c[ 1
3
]
a

• 2

a
c[ 1

4
]

• 3

b c

• 4

a[ 2
3
]

b[ 1
3
]

• 5

b
a[ 1

4
]

• 6 • 7 • 8

a
b

• 9

a[ 1
2
]

• 10

b
a[ 1

2
]

• 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19

Figure 2.8: Process P

Btr (acb, {a}{a,b,c}{a,b}∅) (acb, {a}{a,c}{a,b}∅) (acb, {a}{b,c}{a,b}∅)
BarbAcc(P,Btr) 1

9
1
12

1
3

Table 2.4: Some Barb traces and their corresponding BarbAcc probability values in

process P of Figure 2.8.

It is important to note that an action ai must belong to the acceptance set Xi. Two

processes are Barb acceptance equivalent if and only if they accept all Barb traces with

the same probability.

Definition 2.22. Let BarbAcc : S×(A∗×P(A)∗) → [0, 1] be the Barb acceptance func-

tion which, given a state s and a Barb trace Btr =
(
(a1, a2, . . . , an), (X1, X2, . . . , Xn+1)

)
,

returns the probability that state s performs the Barb trace Btr with success:

BarbAcc(s, Btr) :=
∑

{s′∈S |Can(s′)=Xn+1}
P BarbA

s→s′ (a1. . .an)

where P BarbA

s→s′ (a1. . .an) is defined inductively as

P BarbA

s→s′ (a1. . .an) =
∑

{t∈S |Can(t)=Xn}
P BarbA

s→t (a1. . .an−1)Pt→s′(an).

Two states s1 and s2 are Barb acceptance equivalent if and only if ∀Btr ∈ (A∗×P(A)∗),

BarbAcc(s1, Btr) = BarbAcc(s2, Btr).

Table 2.4 shows some Barb traces and the corresponding BarbAcc probability values

in process P of Figure 2.8.

With a similar argument as the one presented for ready equivalence, Barb acceptance

equivalence cannot be tested.
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Btr (acb, {b,c}∅{c}{a,b,c}) (aca, {b}{b,a}{c}{a,b}) (aa, {b,c}{b}{a,b,c})
BarbRef(P,Btr) 19

36
= (1

9
+ 1

12
+ 1

3
) 0 1

3

Table 2.5: Some Barb traces and their corresponding BarbRef probability values in

process P of Figure 2.8.

2.3.6 Barb Refusal Equivalence

Barb refusal equivalence [35] considers refusal information at intermediate states. In

Barb refusal a Barb trace Btr =
(
(a1, a2, . . . , an), (X1, X2, . . . , Xn+1)

)
is interpreted as

follows: a state s accepts Btr with probability p if s can perform trace τ = a1, a2, . . . , an
with probability p such that in intermediate states it has respectively refusal sets

X1, X2, . . . , Xn+1. Note that an action ai must not be part of the refusal set Xi.

Definition 2.23. Let BarbRef : S × (A∗ × P(A)∗) → [0, 1] be the Barb refusal func-

tion which given a state s and a Barb trace Btr =
(
(a1, a2, . . . , an), (X1, X2, . . . , Xn+1)

)
,

returns the probability that state s accepts the Barb trace Btr:

BarbRef(s, Btr) :=
∑

{s′∈S |Can(s′)∩Xn+1=∅}
P BarbR

s→s′ (a1. . .an)

where P BarbR

s→s′ (a1. . .an) is defined inductively as

P BarbR

s→s′ (a1. . .an) =
∑

{t∈S |Can(t)∩Xn=∅}
P BarbR

s→t (a1. . .an−1)Pt→s′(an).

Two states s1 and s2 are Barb refusal equivalent if and only if ∀Btr ∈ (A∗ × P(A)∗),

BarbRef(s1, Btr) = BarbRef(s2, Btr).

Table 2.5 shows some Barb traces and the corresponding BarbRef probability values

in process P of Figure 2.8.

2.4 Metrics for Stochastic Systems

All equivalence notions for probabilistic processes presented so far are sensitive to the

exact values of transition probabilities. That is, a slight difference in a single transition

probability between two equivalent processes is sufficient to conclude that they are no

longer equivalent. Knowing that generally the probabilities come from approximations,
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these slight differences should not necessarily be interpreted as non equivalence. Instead,

a more suitable approach would be to consider a metric between stochastic processes in

order to quantify how far apart the processes are. A metric d is a function that yields

a real number (distance) for each pair of processes. In order to be a metric function, d

should satisfy the following properties:

1. d(P,Q) = 0 implies that P = Q

2. d(P,Q) = d(Q,P ) (symmetry)

3. d(P,R) ≤ d(P,Q) + d(Q,R) (triangle inequality).

The first property requires that the zero distance coincides with an exact matching

between the two processes. This is too restrictive. Instead, it would be more interesting

to generate a different metric function for each equivalence notion such that the equality

P = Q in the first property is replaced by P and Q being equivalent with respect to

that equivalence notion. By doing so, the function is no longer a metric and is more

accurately called a pseudo-metric. However, we will continue to use the term “metric”

in this thesis to refer to these pseudo-metrics. Since each one of the equivalence notions

presented so far focuses on a particular aspect of processes, this will result in a collection

of metric functions with different capabilities.

Generally, in metrics, the actual numerical values are not very significant. Instead,

properties such as the significance of zero distance and relative distance of processes are

more relevant. This section is a survey of the main approaches in the literature focusing

on metrics and distances for stochastic processes. It starts by presenting fundamental

concepts which can be very useful to compare stochastic processes, namely, entropy,

cross entropy, and in particular relative entropy which is a measure of the difference

between two probability distributions.

Definition 2.24. A random variable X : S → R is a measurable function from a

sample space S to the measurable space (sometimes called alphabet) A of possible values

of the variable.

Example 2.25. Consider the experiment of rolling a die and suppose that we are con-

cerned about whether the outcome is even or odd. The sample space is obviously the set

{1, 2, 3, 4, 5, 6}: the set of possible outcomes of the experiment. The measurable space

can be the set {0, 1} where 0 designates odd and 1 even. Then, the random variable X

can be defined as:

X(ω) :=

{

0 if ω = 1, 3, or 5

1 if ω = 2, 4, or 6.
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A random variable is usually equipped with a probability distribution which is a

probability measure defined over the measurable space. Let X be a random variable

with a probability distribution p. Then

p(x) = Pr(X = x)

for each x in the alphabet of X. If the die of the above example is uniform then

p(0) = p(1) = 1
2
.

2.4.1 Measures of Entropy

The entropy of a random variable is a measure of its uncertainty. It measures the

amount of information required on the average to describe the random variable.

Definition 2.26. Let X be a random variable with an alphabet A and equipped with the

probability distribution p. The entropy of X, H(X) (sometimes noted H(p)), is defined

as:

H(X) = −
∑

x∈A

p(x) log2 p(x).

The value of the entropy is expressed in bits. To clarify the notion of entropy and

the bits unit, consider the following example.

Example 2.27. Let X be a random variable with alphabet A = {a, b, c, d} and prob-

ability distribution p such that: p(X = a) = 1
4
, p(X = b) = 1

3
, p(X = c) = 5

24
, and

p(X = d) = 5
24

. Suppose that we wish to determine the value of X with the minimum

number of binary questions. The best first question is “Is X = b ?”. This has proba-

bility 1
3

that the answer is yes. If, however, the answer is no, the best second question

would be: “Is X = a ? ”. If in turn the answer is no, the next question can be “Is

X = c ?”. The entropy of X corresponds in this example to the average number of

binary questions:

H(X) = −
1

3
log2

1

3
−

1

4
log2

1

4
−

5

24
log2

5

24
−

5

24
log2

5

24
= 1.96 bits.

The cross entropy is another measure which indicates to which extent a probability

distribution matches a second probability distribution.

Definition 2.28. Let X be a random variable with alphabet A and p and q two proba-

bility distributions over the domain of X. The cross entropy between p and q is defined

as:

H(p ‖ q) = −
∑

x∈A

p(x) log2(q(x)).
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Intuitively, consider that the first distribution p is the target distribution and that

q is some estimation of p. Cross entropy measures how well the distribution q fits the

target distribution p. Note that, if p = q then the cross entropy is simply the entropy

of p (H(p, q) = H(p)).

The relative entropy or the Kullback-Leibler divergence3 is a measure of the differ-

ence between two probability distributions.

Definition 2.29. Let X be a random variable with alphabet A and p and q two proba-

bility distributions of X. The relative entropy between p and q is defined as:

KL(p ‖ q) =
∑

x∈A

p(x) log2

p(x)

q(x)
.

The relative entropy KL(p ‖ q) is the extra cost, in bits, of assuming that the dis-

tribution is q when the true distribution is p. KL(p ‖ q) cannot have negative values

(see [7] for a detailed proof) and is zero if and only if p = q. Since it is neither symmetric

nor satisfying the triangle inequality, KL is called a divergence.

Example 2.30. Consider the random variable X of the die experiment defined in Ex-

ample 2.25. Let p and q two probability distributions such that:

p(0) = 1
2

p(1) = 1
2

and
q(0) = 3

4

q(1) = 1
4
.

Then,

H(p) = 1

H(p ‖ q) = 1, 2075

H(q) = 0.81125

H(q ‖ p) = 1
and,

KL(p ‖ q) =
1

2
log2

1
2
3
4

+
1

2
log2

1
2
1
4

= 1 −
1

2
log2 3 = 0.2075 bits

KL(q ‖ p) = 0.1887 bits.

By expanding the definition of relative entropy, one can recover an interesting rela-

3The relative entropy is known under a variety of other names including information divergence,

information for discrimination, etc.
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tion between entropy, cross entropy and the relative entropy.

KL(p ‖ q) =
∑

x∈A

p(x) log2

p(x)

q(x)

=
∑

x∈A

p(x) (log2 p(x) − log2 q(x))

=
∑

x∈A

p(x) log2 p(x) −
∑

x∈A

p(x) log2 q(x)

= −
∑

x∈A

p(x) log2 q(x) +
∑

x∈A

p(x) log2 p(x)

= H(p ‖ q) −H(p). (2.1)

Putting all this together, we can summarize this section by describing the three

entropy measures as follows:

• the entropy H(p) measures the minimum number of bits needed to identify an

event x in the alphabet of X if the probability distribution p is used,

• the cross entropy H(p ‖ q) measures the average number of bits needed to identify

an event x in the alphabet of X if a probability distribution q is used rather than

the “true” distribution p,

• the relative entropyKL(p ‖ q) measures the number of extra bits needed to identify

an event x in the alphabet of X if a probability distribution q is used rather than

the “true” distribution p.

We will see later how the KL divergence is used to define a stochastic game that is

behind the main contribution of this thesis.

2.4.2 Distance Measure for Hidden Markov Models

The first metric for stochastic processes that we present measures distances between

Hidden Markov Models (HMMs). An HMM is a stochastic model where the state space

is not observable: one cannot see the current state at a given moment. A detailed

definition of HMMs will be given in Chapter 7. But for the sake of presenting two

distance measures for HMMs, it is sufficient to regard a HMM as a transition system

with a single action and where each visited state generates an observation out of a set

of possible observations, governed by a probability distribution. More formally a HMM

λ with N states and M observations is a tuple (µ,A,B) where:
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• µ is the initial state probability distribution

• A is an N ×N state transition probability matrix, and

• B is an N ×M observation probability matrix.

Example 2.31. Let λ1 = (µ1, A1, B1) be a HMM with 4 states and 3 observations:

A1 =








0 0 0.5 0.5

0.5 0 0.4 0.1

0.2 0 0.5 0.3

0 0.2 0.2 0.6








B1 =








0.5 0.2 0

0.1 0.3 1

0.4 0 0

0 0.5 0








µ1 =
(

0.25 0.25 0.25 0.25
)

a23 = 0.4 in the matrix A1 represents the probability to make a transition from state

2 to state 3. b12 = 0.1 in matrix B1 represents the probability that observation 2 is

generated when the model is in state 1.

Rabiner et al. [41] used HMMs to model words in an automatic speech recognition

system4. The HMM parameters (µ,A, and B) can be estimated iteratively from a set of

observation sequences: at each iteration, the current estimation is improved and a new

HMM is generated. This loop stops when the distance between two successive HMMs

becomes negligeable. Rabiner et al. developed two distance measures for HMMs: one

is based on a state permutation function [33] and the other is inspired by relative

entropy [24]. We now briefly present these distances.

The first distance measure is given by the following equation. Let λ = (µ,A,B) and

λ̂ = (µ̂, Â, B̂) be two HMMs with N states and M observations. Then,

d(λ , λ̂) = ‖B − B̂‖ =
( 1

M N

N∑

j=1

M∑

k=1

[ bjk − b̂f(j)k ]2
) 1

2 (2.2)

where bjk is the probability to get observation k form state j in HMM λ and f(j) is the

state permutation that minimizes the measure of the equation. The optimal state per-

mutation is determined by using a technique of minimum bipartite matching (Appendix

B of [33]). It is interesting to notice that the distance measure of Equation (2.2) depends

only on the observation matrix B. This can be explained by the fact that for HMMs,

the matrix B has significantly more impact on the distance than the other parameters

µ and A. Indeed, HMM model parameters are most of the time estimated on the basis

of the observed events. At the same time, this characteristic constitutes an argument

4This application is detailed in Appendix B.
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against this measure since it would be more obvious to include the other parameters.

In addition, the evaluation of this measure requires a great deal of computation.

The second distance measure is inspired by relative entropy KL. Let λ = (µ,A,B)

be a HMM and let OT = o1o2. . .oT be a sequence of observations of length T and

ST = s0s1. . .sT the corresponding hidden state sequence. Then, ν(OT |λ) represents the

probability that HMM λ accepts the observation sequence OT and is defined as:

ν(OT |λ) =
∑

all ST =s0s1. . .sT

µ(s0)
T∏

t=1

ast-1st
bstot

.

Let λ = (µ,A,B) and λ̂ = (µ̂, Â, B̂) be two HMMs. Then, the distance measure

D(λ , λ̂) is defined as:

D(λ , λ̂) = lim
T→∞

1

T

[
log2 ν(OT |λ) − log2 ν(OT | λ̂)

]

where OT is an observation sequence generated according to the distribution ν( . |λ).

It is important to mention that the distance measure D(λ , λ̂) requires that the pair

of HMMs being compared both be ergodic. An ergodic model is a model where every

state can be reached from any other state in a finite number of steps. The distance

measure D(λ , λ̂) is not symmetric. A symmetrized version can be simply generated:

DS(λ , λ̂) =
1

2

[
D(λ , λ̂) +D(λ̂ , λ)

]
.

These two distances proved their efficiency in practice, especially in automatic speech

recognition systems, but it is important to mention that both distances rely on the

knowledge of the HMM models. The two distances have been presented to the sake of

comparison with the technique we propose. Indeed, like the second metric presented

above, the technique we propose in this thesis to estimate the divergence between

processes is based also on the relative entropy KL. The difference, however, is that our

technique does not require knowledge of the models.

2.4.3 A Metric for Labelled Markov Processes

The metric we describe in this section is due to Desharnais et al. [9] and is inspired

by the logical characterization of bisimulation (Section 2.3.2). Recall that to show

the difference between two LMPs, it is sufficient to come up with a formula that is

satisfied in one process but not in the other. More complex distinguishing formulas

indicate closer processes. Indeed, if the formula is very large, then only a long sequence
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of observations will distinguish the processes. Capturing this intuition with logical

formulas is not possible since the formulas yield truth values in {0, 1}. The idea is

then to propose a quantitative analogue of logical formulas which are called functional

expressions. A functional expression is interpreted on a state of the process and yields a

numerical value in the interval [0, 1]. This value corresponds to a quantitative measure

of the extent to which the state satisfies a logical formula. Recall that the logical

characterization of bisimulation is given by the logic L0:

F ::= tt | F1 ∧ F2 | 〈a〉p F.

For each c ∈ (0, 1], F c represents a family of functional expressions generated by the

following grammar:

f := 1 | 1 − f | 〈a〉 f | min(f1, f2) | sup
i∈N

fi | f 	 q

where q is rational. A functional expression is not a function until it is interpreted in a

process.

Let L = (S, s0,A, P ) be an LMP. Then, the interpretation of the functional expres-

sion f in L yields the function fL : S −→ [0, 1] (the subscript is discarded when no

confusion can arise) such that, for s ∈ S,

• 1(s) = 1

• (1 − f)(s) = 1 − f(s)

• 〈a〉 f(s) = c
∑

t∈S P (s, a, t) f(t)

• (f 	 q)(s) = max(f(s) − q, 0)

c appears only in the interpretation of 〈a〉 f(s) and its role is to discount the effect of

actions that happen later in the future. If c = 1, then all actions have the same effect

regardless of their position in the future.

To see intuitively the relationship between the syntax of F c and the logic L0, let us

make an informal analogy between the connectives of F c and the ones of L0. tt maps

to the functional 1, the conjunction maps to the min connective, and 〈a〉q is split up

into two expressions: 〈a〉 f , which corresponds to prefixing and, f 	 q, which captures

the greater than q idea.

Example 2.32. Consider the LMPs L1 = (S1, s0,A, P ) and L2 = (S2, t0,A, P
′) of

Figure 2.9. The formula F = 〈a〉 1
3
(〈a〉T ∧ 〈b〉T ) is one of the formulas that witness
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• s0

a

• 1

a[ 1
3
] b[ 2

3
]

• 2 • 3

• t0
a[ 1

3
] a[ 2

3
]

• 1

a

• 2

b

• 3 • 4

Figure 2.9: LMPs L1 and L2

the non bisimilarity of L1 and L2. Indeed, it is satisfied in L1 but not in L2. Let

f = 〈a〉min(〈a〉T, 〈b〉T ) be a functional expression inspired by F . Then,

fL1 = f(s0) = c 1 min(c 1
3
, c 2

3
) = c2

3

fL2 = f(t0) = c 1
3
min(c , 0) + c 2

3
min(c , 0) = 0.

The soundness and completeness of this function set with respect to bisimulation

are expressed in the following theorem.

Theorem 2.33. [9] For any LMPs L and L′ and for any c ∈ (0, 1]

s ∈ S and s′ ∈ S ′ are bisimilar ⇔ ∀ f ∈ F c fL(s) = fL′(s′).

Each collection F c of functional expressions induces a distance measure between

two LMPs L and L′:

dc(L , L′) = sup
f∈Fc

| fL(s0) − fL′(s′0) |.

2.4.4 ε-bisimulation Metric

This metric is due to Giaclone et al. [16]. It has been defined for a particular class of

processes called deterministic PCCS (Probabililistic Calculus of Communicating Sys-

tems) processes. The word deterministic is used in the sense that, for any action a, a

PCCS process has at most one transition labelled with a. The metric is based on a

weak form of bisimulation called ε-bisimulation, denoted
ε
∼. Two processes P and Q

are ε-bisimilar (P
ε
∼ Q) if P and Q can simulate each other with a bound ε of deviation

in probability.

Definition 2.34. For ε ∈ [0, 1), a relation Rε is called ε-bisimulation if (P,Q) ∈ Rε

implies ∀a ∈ A,
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• P

a[0.3] b[0.7]

• 1

a[0.1] b[0.9]

• 2

• 3 • 4

• Q

a[0.3] b[0.8]

• 1

a[0.2] b[1]

• 2

• 3 • 4

• R

a[0.5] b[0.9]

• 1

a[0.4] b[0.8]

• 2

• 3 • 4

Figure 2.10: ε-bisimilar processes

i. if P
a[p]
−−→ P ′ then ∃Q′ such that Q

a[q]
−−→ Q′, | p− q | ≤ ε, and (P ′, Q′) ∈ Rε

ii. if Q
a[q]
−−→ Q′ then ∃P ′ such that P

a[p]
−−→ P ′, | p− q | ≤ ε, and (P ′, Q′) ∈ Rε.

where P
a[p]
−−→ P ′ means that process P can perform an a-labelled transition to P ′ with

probability p.

Two processes P and Q are said to be ε-bisimilar if there exists an ε-bisimulation Rε

such that (P,Q) ∈ Rε.

Based on ε-bisimulation, Giaclone et al. defined a metric for deterministic PCCS

processes. Intuitively, the distance between two processes P and Q is ε if they are

related by
ε
∼ and by no other

ε′
∼ such that ε′ < ε. That is,

ρ(P , Q) :=

{

inf ε such that P
ε
∼ Q

1 otherwise.

Example 2.35. Consider the three deterministic PCCS processes P , Q, and R of

Figure 2.10. It is easy to see that P
0.1
∼ Q, Q

0.2
∼ R, and P

0.3
∼ R. Hence, ρ(P , Q) =

0.1, ρ(Q , R) = 0.2, and ρ(P , R) = 0.3.

This ε-bisimulation based metric is symmetric and does satisfy the triangle inequality

(the proof is simple and can be found in [16]). However, for non-deterministic PCCS

processes, the metric fails to satisfy the triangle inequality. To the best of our knowledge

the ε-bisimulation metric has not been used in practice.

Other metrics were proposed by Van Breugel and Worrel [58, 57] and in the non-

deterministic case by Kwiatkowska and Norman [27, 28].
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2.5 Conclusion

In this chapter, we introduced stochastic models used in formal verification, in par-

ticular labelled Markov processes (LMP). Then, we went through the most popular

probabilistic equivalence notions for stochastic processes and we discussed their testing

and logical characterizations. However, we showed that with stochastic processes, it

is more practical to consider distance or divergence measures. The last section of this

chapter was a survey of these metrics. An interesting feature shared by most of the

metrics one can find in the literature is that they require the models of the stochastic

processes. Hence, if one wants to compare stochastic processes whose internal struc-

tures are completely unknown, all these metrics turn out to be useless. In Chapter 4, we

present an approach to compare stochastic processes that do not rely on the knowledge

of their internal structures. The idea is to use reinforcement learning, a branch of ma-

chine learning known for its efficiency when the model or the models are not completely

known. The next chapter is a description of the reinforcement learning problem and its

solution methods.



Chapter 3

Reinforcement Learning (RL)

3.1 Introduction

One of the main results of this thesis is to reformulate the problem of comparing sto-

chastic systems into a problem a RL problem. RL is a relatively new scientific field

which became one of the most active research areas in machine learning and artificial

intelligence. It has developed strong mathematical foundations and impressive applica-

tions in robotics, control theory, simulation, etc. This chapter is a survey of the field.

The first part is an introduction to the basic elements of RL including the Markov

decision process (MDP) framework. The rest of the chapter is a survey of the most

important techniques to solve MDPs. A reader familiar with RL notions and algorithms

can safely skip this chapter.

3.2 Basic Elements

The term reinforcement learning is derived from a theory in psychology having the

same name [49]. In computer science, it designates a branch of artificial intelligence

and machine learning which is particularly suited for prediction and control in stochastic

environments.
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Figure 3.1: The agent-environment interaction

3.2.1 Agent-Environment Interaction

Reinforcement Learning (RL) consists in learning from interaction to achieve a goal.

The entity in charge of learning is called the RL agent or simply, the agent. This agent

is in constant interaction with a dynamic environment. The environment designates

everything outside the agent. The protocol of interaction between the agent and the

environment is depicted in Figure 3.1. At each time step t, depending on its current

state st, the agent selects an action at and behaves accordingly. The environment

responds to this move by issuing a reward value rt+1 and specifying the new state of

the agent st+1. Generally, the reward value indicates to what extent the goal has been

approached or achieved. Hence, the interaction between the agent and the environment

starting from time step t yields a sequence of the form : st at → st+1 rt+1 at+1 →

st+2 rt+2 at+2 . . . → st+n rt+n at+n.

Example 3.1. Consider a robot navigating in a room and trying to find the exit door.

The robot can select to move in any direction. Hence, the set of actions can be the set

of moving directions (e.g. left, right, forward, backward). The set of states can be the

set of possible coordinates in the room. The reward can be 0 for all actions except the

ones which end up in the goal state, that is, the exit door, which yields a reward of 1.

In this simple example, the boundary between the agent and the environment, unlike

one could think, does not correspond to the physical boundary of the robot. Actually,

it is much closer to the agent than that. The RL agent is the decision-making entity

of the robot. All the other parts including sensing hardware are considered part of the

environment. More generally, the boundary between the agent and the environment is
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drawn according to what the agent can change arbitrarily. That is, anything that falls

beyond the complete control of the agent is considered part of its environment.

Reinforcement learning is a goal-oriented task. The objective of the agent is then to

maximize its cumulative reward, called also the expected return. In its simplest form,

the return after a time step t, Rt, is the sum of the sequence of obtained rewards. That

is,

Rt = rt+1 + rt+2 + rt+3 + . . .+ rt+n. (3.1)

This simple way of computing the cumulative reward requires the knowledge of the

number n of steps to be performed. For example, in the robot of Example 3.1, one needs

to know the number of moves the robot will undertake before starting the episode. More

interesting forms of returns will be discussed later.

3.2.2 Markov Property

At each time step, the agent selects an action to perform based on its current state.

Hence, the state representation in a RL task is an important issue One could think that

immediate sensations are all that the agent needs for decision-making. Unfortunately,

in many problems, more information is needed. In particular, the agent may need

information about the past history. For example, suppose that the robot of Example 3.1

has a variable speed. Then the immediate sensation at a given moment which is the

current position in the room is not sufficient to make a good decision. Knowledge

about the speed with which it is moving is required. In light of this, a good state

representation is a one that retains relevant information about immediate and past

sensations in a compact and summarized form. The crucial point is that all that is

needed to make a decision in the future should be retained in the current state. Such a

state representation is said to have the Markov property. A good example of a Markov

state representation is a checkers position: everything the player needs to know in order

to make the next move is summarized in the current position.

To make a formal illustration of the Markov property in the context of RL, consider

a typical step of interaction between the agent and its environment. Without assuming

the Markov property, the probability that, at time step t + 1, the agent finds itself in

state s′ with a reward r is:

Pr{st+1 = s′, rt+1 = r | st, at, rt, st−1, at−1, . . . , r1, s0, a0}
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where st, at, rt, st−1, at−1, . . . , r1, s0, a0 represent the complete past history of the agent.

By assuming the Markov property, this probability is the same as:

Pr{st+1 = s′, rt+1 = r | st, at}.

3.2.3 Markov Decision Process (MDP)

A Markov Decision Process (MDP) [5, 43, 61, 62, 63] is a mathematical framework to

model RL tasks satisfying the Markov property. More precisely, an MDP is defined as

follows.

Definition 3.2. An MDP is a tuple (S,A, T,R) where:

• S is a set of states.

• A is a set of actions.

• T : S × A → Π(S) is a transition function which maps each state-action pair to

a probability distribution over the set S. We write Ts→s′(a) for the probability to

make a transition to state s′ from s via action a.

• R : S × A → R is the reward function which maps each state-action pair (s, a)

to a real number representing the average immediate reward obtained by an agent

when it performs action a from state s. We write Ra
s for R(s, a).

Sometimes the reward function is defined differently. Indeed, it can be defined as

R : S × A× S → R (that is, by specifying the target state as well). In that case, Ra
ss′

refers to the reward resulting from running action a on state s and ending in state s′.

Since no confusion can arise, in the rest of the thesis, both notations are used.

Example 3.3. Consider the simple Gridworld with obstacles of Figure 3.2. The agent

starts from state 1 (S) and tries to reach the goal state (G). At each state, there are 4

possible actions A = {l, r, u, d} for the 4 possible directions left, right, up, and down.

These actions do not cause transitions in the corresponding directions deterministically.

With probability 0.8 the selected action causes the corresponding transition, with proba-

bility 0 it causes a move to the opposite direction (never happens), and with probabilities

0.1 a move in one of the two other directions. For instance, if the agent is in state 7

and tries action right, then with probability 0.8 it makes a transition to state 8, with

probability 0.1 it makes a transition to state 11, and with probability 0.1 it makes a

transition to state 2. Hence, T7→8(r) = 0.8, T7→11(r) = 0.1, T7→2(r) = 0.1. Transitions
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Figure 3.2: A Gridworld with obstacles

leading outside the grid or to an obstacle location are blocked, in which case the agent

remains where it is. The immediate reward is 0 for all state-action pairs except for

the pairs that lead to the goal state, where the immediate reward is 1. Once the goal

state is reached, the task is reinitialized to the initial state. For small and simple RL

problems such as this one, it is very helpful to represent the corresponding MDP as a

graph. The nodes of the graph represent the states, the edges represent the transitions.

These are labelled with the action, the corresponding probability (between brackets) and

the immediate reward. Figure 3.3 shows part of the Gridworld MDP.

3.2.4 Finite Horizon and Infinite Horizon

Equation (3.1) states that the return Rt is simply the sum of the sequence of received

immediate rewards rt+1, rt+2, . . . , rt+n. This approach is convenient when one wants to

compute the return expected from the next n steps. This framework is called finite

horizon. The expected return can then be formulated as:

E
(

n∑

k=0

rt+k+1

)
. (3.2)

This framework is not very useful in practice since it is rare that an appropriate n is

known exactly. Instead, one may prefer a more mathematically attractive framework

called infinite-horizon discounted model. In this model, the sequence of rewards is

discounted as follows:

Rt = rt+1 + γ rt+2 + γ2 rt+3 . . .

E(Rt) = E
(

∞∑

k=0

γk rt+k+1

)
(3.3)

where 0 ≤ γ ≤ 1 is called the discount factor. This approach to compute the return

gives less weight to rewards that happen later in the future. By varying the discount
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Figure 3.3: A graphical representation of part of the Gridworld MDP.

factor γ between 0 and 1, one can control the rate at which the future gets discounted.

The extreme case of γ = 0 means that the agent is “myopic”, concerned only by the

immediate reward. The other extreme case, γ = 1, is equivalent to the non-discounted

return of Equation 3.2.

The return can be computed by a third approach called the average reward [36]. It

is an undiscounted optimality framework where the rewards obtained starting from a

state are summed up without discount and then averaged over the different episodes.

In this thesis, we do not consider this approach.

3.2.5 Policy

One important role of the agent is to decide which action to take at each state. The

agent may prefer some action over another for a variety of reasons. The strategy that

the agent uses to select actions is called a policy. A policy π is defined as a mapping

between states and probability distributions over the set of actions (π : S → Π(A)). We

write π(s, a) for the probability that the agent selects action a in state s. The policy

of taking each time the action with the maximum apparent retrun is called the greedy

policy.
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By definition, a policy is stochastic since it maps each state to a probability distri-

bution over actions. However, a policy is deterministic if it maps each state to a single

action with probability 1.

Policies as we have defined them are called stationary policies, because the choice of

action depends only on the current state s and is totally independent of the time step t.

A non-stationary policy is a policy which is dependent on the time step. It is a sequence

(π1, π2, π3, . . .) of mappings between states and probability distributions over actions,

one for each time step. This kind of policy is suited for the finite-horizon framework.

Indeed, in this framework, the way the agent chooses its actions on the first step is

generally different than the way it chooses them on the last step of its lifetime. By

way of example, in the last step, the agent would prefer the action with the maximum

immediate reward. However, if a certain number of steps remain in its lifetime, then it

is better to select an action which maximizes the return over the remaining steps. In

the infinite-horizon framework, a non-stationary policy is not necessary, since the agent

has a constant expected amount of time remaining; so there is no reason to change the

policy at each time step. A stationary policy is more appropriate. Most of the theory

on RL focuses on the infinite-horizon discounted model and stationary policies. In this

thesis, we assume these cases too.

The goal of an RL task is to maximize the expected return. This consists in finding a

policy that guarantees a maximum expected return for each state. This policy is called

the optimal policy, denoted π∗. Solving an RL task or an MDP consists in finding its

optimal policy.

3.2.6 Value Function

The expected return, E(Rt), is the cumulative reward the agent is expected to obtain

after time step t. This return depends on two parameters: the agent’s current state and

the agent’s policy. The expected return is then called the state-value function and is

denoted V π(s). For a discounted future, the state-value function for state s and policy

π is defined as:

V π(s) = Eπ{Rt | st = s} = Eπ
{

∞∑

k=0

γk rt+k+1 | st = s
}
. (3.4)

where Eπ is the expected value given the policy π. Another interesting and, as we

will see later, very useful function is the action-value function, denoted Qπ(s, a), which

maps each state-action pair to a value given a policy π. Qπ(s, a) represents the expected
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return when taking action a in state s and then following policy π :

Qπ(s, a) = Eπ{Rt | st = s, at = a} = Eπ
{

∞∑

k=0

γk rt+k+1 | st = s, at = a
}
. (3.5)

For small problems in which the MDP model (transition and reward functions) is com-

pletely known, there exist techniques to compute exactly the state-value and action-

value functions. These techniques use the following recursive property of the value

functions. Let M = (S,A, T,R) be a finite MDP, s a state in S and π a policy. The

state-value function can be expressed as :

V π(s) =
∑

a∈A
π(s, a)

∑

s′∈S
Ts→s′(a)

[
Ra
ss′ + γ V π(s′)

]
. (3.6)

This equation is known as the Bellman equation [3] for V π. It expresses the value

of a state using the values of its successor states. The first sum (
∑

a∈A π(s, a)) is

over the set of actions A averaged by the probability that the policy π selecting each

action. The second sum (
∑

s′∈S Ts→s′(a)) is over the possible next states averaged by the

corresponding probability Ts→s′(a). The remaining of the equation (
[
Ra
ss′ + γ V π(s′)

]
)

represents the value of the return with action a selected and next state s′ taken. The

action-value function Qπ(s, a) can be expressed using the state-value function as follows:

Qπ(s, a) =
∑

s′∈S
Ts→s′(a)

[
Ra
ss′ + γ V π(s′)

]
. (3.7)

Using the Bellman equation to compute the value functions is a computation-intensive

and demanding task since it performs an exhaustive search by averaging over all actions

and all possibilities of transitions. Hence, it relies on a complete and accurate knowledge

of the dynamics of the MDP which is rarely available in practice. In situations where

the model of the MDP is not completely known, it is very difficult to compute exactly

the state and action-value functions. In such situations, one can only estimate the

functions via interaction with the environment. Estimating the value functions through

interaction is the core element of RL. In the following sections, we present several known

algorithms for doing it.

3.2.7 Optimality

Computing or estimating the value functions V and Q is a step towards achieving the

main goal of RL, that is, finding the policy that maximizes the value functions for each

state. This policy is called the optimal policy, is denoted π∗ and satisfies the following

condition:

V π∗
(s) ≥ V π(s) ∀π ∀s ∈ S.
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Actually, there could be several optimal policies for a problem. The value function

corresponding to the optimal policies is called the optimal value function and is noted

also V ∗. Similarly, one can define the optimal action-value function Q∗. For a state-

action pair (s, a), this function returns the expected value of selecting action a from

state s and then following an optimal policy. That is,

Q∗(s, a) = max
π

Qπ(s, a).

Most of the RL theory is about solving MDPs, that is, identifying the optimal value

functions and the corresponding optimal policies. The rest of this chapter is a survey

of the most important trends and algorithms for achieving it.

3.3 Dynamic Programming

The methods to solve MDPs fall into two classes: planning methods and learning

methods. Planning are methods that require a model of the environment. By a model,

we mean anything that an agent can use to predict how the environment will respond

to its actions. Hence, planning refers to any technique that takes a model as input

and tries to figure out the optimal value function and the optimal policy. On the other

hand, learning methods can be used without a model of the environment. The optimal

policy is learned by interacting with the environment, that is, by using real experience.

Dynamic programming is a planning method. It refers to a “collection of algorithms

that can be used to compute optimal policies given a perfect model of the environment

like an MDP”. Since it relies on a perfect model of the environment, dynamic pro-

gramming is rarely useful in practice. However, it has been extensively studied in the

literature because it is very attractive for the theoretical standpoint. In particular, it

includes ideas that are essential to understand the other planning as well as learning

methods. The pivotal equation of all dynamic programming algorithms is the Bellman

equation (3.6) which updates the value of a state based on values of all possible suc-

cessor states. This is known as full backup. On the other hand, sample backup consists

in updating state values using only one (sampled) possibility of transition. This type

of backup is mainly used with learning methods. The first algorithm we present is an

algorithm to compute the value function V π for an arbitrary policy π.
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Input π

Initialize V (s) = 0, for all s

Repeat

δ = 0

For each state s ∈ S

v = V (s)

V (s) =
∑

a∈A
π(s, a)

(
Ra
s +

∑

s′∈S
Ts→s′(a) γ V (s′)

)

δ = max(δ, | v − V (s) |)

Until δ < ε

Return V .

Figure 3.4: Iterative policy evaluation

3.3.1 Iterative Policy Evaluation

Iterative policy evaluation is an algorithm which takes as input a policy π and returns

the value function V π. The idea is to start form an arbitrary initial value function

V0 (for example V0(s) = 0, for all s) then to update it using the Bellman equation to

obtain V1. Then, the same mechanism is repeated for V1, and so on. More formally, at

each iteration k, the value function Vk is updated to obtain a new value function Vk+1

according to the following update rule:

Vk+1(s) =
∑

a∈A
π(s, a)

(
Ra
s +

∑

s′∈S
Ts→s′(a) γ Vk(s

′)
)
.

It can be shown that the sequence V0, V1, V2, . . . , Vk, . . . converges to the exact value

function V π as k → ∞. However, for practical considerations, waiting until the al-

gorithm converges to the exact value function V π is not a computationally good idea.

Instead, the iterations can be stopped relatively long before that. The problem is that it

is not obvious to decide when to stop the iterations. One possible termination criterion

is to wait until the maximum difference between two successive value functions Vk(s)

and Vk+1(s) over all states is less than some threshold ε:

max
s∈S

|Vk(s) − Vk+1(s)| ≤ ε.

The procedural form of iterative policy evaluation algorithm is given in Figure 3.4.

Example 3.4. Consider the MDP of Figure 3.5 with actions set A = {a, b, c}. Let π

be a policy such that, for each state s, π(s, a) = 0.5 and π(s, b) = 0.5. Let us compute

the value of policy π using the iterative policy iteration with γ = 0.8 and ε = 0.01:
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0

a[0.7]

R=3
a[0.3]

R=3

b[1]

R=−1

c[1]

R=1

1

b[0.6]

R=2

b[0.4]

R=2

2

c[1]

R=1

a[1]

R=5

3

a[1]

R=1

4

a[0.2]

R=3 a[0.8]

R=3
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R=2
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a[1]

R=−1 b[1]

R=0

c[1]

R=1

9 10 11 12

13 14 15

Figure 3.5: A simple MDP.

V0(s) = 0 ∀ s ∈ S

V1(0) = π(0, a) (Ra
0 + T0→1(a) γ V0(1) + T0→2(a) γ V0(2))

+π(0, b) (Rb
0 + T0→3(b) γ V0(3))

= 0.5 (3 + 0.7 0.8 0 + 0.3 0.8 0) + 0.5 (−1 + 1 0.8 0) = 1

V1(1) = 0.5 (2 + 0.6 0.8 0 + 0.4 0.8 0) = 1

V1(2) = 0.5 (5 + 1 0.8 0) = 2.5

V1(3) = 0.5 (1 + 1 0.8 0) = 0.5

V1(4) = 0.5 (3 + 0.2 0.8 0 + 0.8 0.8 0) = 1.5

V1(8) = 0.5 (−1 + 1 0.8 0) + 0.5 (0 + 1 0.8 0) = −0.5

V2(0) = 0.5 (3 + 0.7 0.8 1 + 0.3 0.8 2.5) + 0.5 (−1 + 1 0.8 0.5) = 1.705

V2(2) = 0.5 (5 + 1 0.8 (−0.5)) = 2.3

V3(0) = 0.5(3 + 0.7 0.8 1 + 0.3 0.8 2.3) + 0.5 (−1 + 1 0.8 0.5) = 1.756.

The exact state values according to policy π are then: V π(0) = 1.756, V π(1) = 1,

V π(2) = 2.3, V π(4) = 1.5, V π(8) = −0.5. The value of the remaining states is 0.

3.3.2 Policy Iteration

Policy iteration is a control algorithm, that is, it focuses on looking for the optimal pol-

icy. If follows a process called policy improvement. This process consists in constructing,

at each iteration, a new and better policy based on an original policy. Consider a de-

terministic policy π which selects at state s action a (π(s) = a). If selecting action a′
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π0
E

V π0

I

π1
E

V π1

I

π2

Figure 3.6: Policy evaluation and policy improvement

from s instead of a produces a better result, then, the policy π ′ which behaves exactly

as π except on state s, where π′(s) = a′, will yield a better value function:

V π′
(s) ≥ V π(s) ∀s ∈ S.

Moreover, if this improvement is performed on all states at each iteration, then a faster

rate of improvement can be achieved. The approach of policy iteration algorithm is to

iterate over this process so as to obtain at each iteration a better policy. Between two

successive improvements, the algorithm evaluates the current policy. This evaluation

consists in applying the policy evaluation algorithm of the previous section. Hence the

policy iteration algorithm can be graphically represented as moving in a two dimensions

space: one evaluation step, then one improvement step, and so on (Figure 3.6).

The complete algorithm is given in a procedural form in Figure 3.7. The expression

argmaxa∈A(f) returns the action that maximizes f .

3.3.3 Value Iteration

Policy iteration has a serious drawback in that each iteration involves a complete run of

policy evaluation algorithm. The latter, described in Section 3.3.1, consists of several

sweeps over the set of states. To improve this, one can alleviate the iterations of the

algorithm by stopping the policy evaluation before reaching convergence. Hence, the

policy evaluation step can be stopped after a certain number of sweeps over states. In

particular, the extreme case of stopping policy evaluation after one sweep is of special

interest. The resulting algorithm is called value iteration. The update rule of value

iteration combines both policy improvement and policy evaluation steps:

Vk+1(s) = max
a∈A

(
Ra
s +

∑

s′∈S
Ts→s′(a) γ Vk(s

′)
)
.
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1. Select a random policy π

Initialize V arbitrarily (e.g. V (s) = 0)

2. Repeat

δ = 0

For each state s ∈ S

v = V (s)

V (s) =
∑

a∈A
π(s, a)

(
Ra
s +

∑

s′∈S
Ts→s′(a) γ V (s′)

)

δ = max(δ, | v − V (s) |)

Until δ < ε

3. policyStable = true

For each state s ∈ S

b = π(s)

π(s) = argmaxa∈A
(
Ra
s +

∑

s′∈S Ts→s′(a) γ V (s′)
)

if b 6= π(s) then policyStable = false

if policyStable then stop

else goto 2

4. Return V and π.

Figure 3.7: Policy iteration

As of the termination criterion, Williams and Baird [64] showed that if the maximum

difference between two successive values functions is less than ε, that is,

max
s∈S

|Vk(s) − Vk+1(s) | ≤ ε

then the value function of the greedy policy (the policy which consists in taking at

each state the action with the maximum value using the current estimate of the value

function) differs from the value function of the optimal policy by no more than 2 ε γ
1−γ . In

the light of this result, one can tune the algorithm to produce a policy with a desired

closeness to the optimal policy. The complete value iteration algorithm is illustrated in

Figure 3.8.

3.4 Exploration versus Exploitation

Unlike planning methods, learning methods do not need a model in input to solve an

MDP. They directly learn the optimal value function and policy by interacting with the

environment. In a typical learning algorithm, the agent selects at each step a sample

action that he thinks will yield the best return on the long-run. If the agent maintains,
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Initialize V arbitrarily (e.g. V (s) = 0)

Repeat

δ = 0

For each state s ∈ S

v = V (s)

V (s) = max
a∈A

(
Ra
s +

∑

s′∈S
Ts→s′(a) γ V (s′)

)

δ = max(δ, | v − V (s) |)

Until δ < ε

For each state s ∈ S, π(s) = arg max
a∈A

(
Ra
s +

∑

s′∈S
Ts→s′(a) γ V (s′)

)

Return V and π.

Figure 3.8: Value iteration

for each state, an estimate of the action-value for each action (Q(s, a)), then it may

think that choosing the action with the highest action-value, called the greedy action,

will guarantee the highest return at the long-run. This is, most of the time, not the

case. Indeed, recall that the return following an action is the cumulative reward and

that the action-values maintained at each step are only estimates of that return. Hence,

an action with an apparently low action-value may get an important reward after some

steps. Similarly, an apparently greedy action may turn out to not be that good after

some steps in the future. By choosing a greedy action, the agent is said to exploit

its current knowledge to maximize the return on the long-run, whereas by choosing

one of the other non-greedy actions, the agent is said to explore its environment to

discover better actions that it can then exploit. Since by a single action selection it is

not possible to both exploit and explore, the agent should tradeoff between exploitation

and exploration. This tradeoff is a crucial aspect of RL theory. The methods to select

actions from states so as to guarantee a good compromise between exploration and

exploitation are called action selection methods. The most known action selection

methods are ε-greedy [61] and Softmax [6].

3.4.1 ε-greedy

At each state, there is always one or several actions with a maximum estimated action-

value: the greedy actions. Selecting at any state the greedy action prevents any explo-

ration of the other possible actions. This can lead to very poor value functions since

the algorithm will converge quickly to a sub-optimal policy. One interesting alternative

to this 100% greedy approach is to behave most of the time greedily and once in a while
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select randomly among the non-greedy actions. Hence, using a suitable ε (0 < ε < 1),

select the greedy action with probability 1−ε and with a probability ε selects randomly

among all actions, including the greedy action. More precisely, in presence of a set of

actions A, the greedy action is selected with probability 1− ε+ ε
|A| and any other action

is selected with probability ε
|A| . This action selection method is called ε-greedy. The

mechanism of letting all actions possible from a state is called softening and it is mainly

used for policies. It is important to mention that, generally, better convergence results

are obtained by letting the ε value decrease progressively over time.

3.4.2 Softmax

One important downside of the ε-greedy method is that when it behaves non-greedily, it

will select an action randomly from the set of actions regardless of their action-values.

In situations where there are strong differences between actions, the convergence to

the optimal policy may be strongly affected. To overcome this problem, one possible

solution is to weight the probability of selecting each action according to its current

estimated action-value. This method is called Softmax action selection. Several math-

ematical formulas can be used to rank the actions according to their Q−values. The

most popular is the Gibbs distribution, which chooses each action a among n actions

with probability:
eQ(s,a)/τ

∑n
b=1 e

Q(s,b)/τ

where τ is a positive number called the temperature. The temperature τ controls to

which extent a difference in action-values will transpose into difference in probabilities.

The bigger is τ , the more equiprobable the actions will be. Hence, a low temperature

τ will yield to accentuated probabilities for actions with different action-values.

It is not clear which one of ε-greedy and Softmax is better. Most of the time this

depends mainly on the nature of the task.

3.5 Monte Carlo

The Monte Carlo (MC) expression refers typically to estimation techniques involving

an important random component. In the context of RL, it refers to methods for solving

MDPs by averaging complete sample returns [38].
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Initialize V arbitrarily (e.g. V (s) = 0)

Returns(s) = empty list, for each s ∈ S

Repeat m times (m = the number of episodes)

Generate an episode using π

For each state s in the episode

R = return following s

Append R to Returns(s)

V (s) = Average(Returns(s))

Return V .

Figure 3.9: First-visit MC policy evaluation

With Monte Carlo, the RL task is assumed to break up into episodes. Hence, what-

ever actions are selected, an episode terminates after a finite number of steps. Monte

Carlo is a learning method whose main idea is to maintain the returns following each

state, then the value is obtained by averaging all experienced returns. One important

aspect of Monte Carlo is that the agent must wait until the end of the episode before

adding the return and updating the values of states. As for dynamic programming, we

start by presenting a Monte Carlo algorithm for policy evaluation.

3.5.1 Monte Carlo Policy Evaluation

Recall that the policy evaluation algorithm takes as input a policy π and tries to

estimate the corresponding value function V π. There are two Monte Carlo methods

to do it: every-visit MC and first-visit MC [2, 48]. The every-visit method averages

the (discounted) returns of all visits to a given state s across all episodes. The first-visit,

however, averages the returns of only the first visits in each episode. The algorithm

of the first-visit MC policy evaluation is illustrated in a procedural form in Figure 3.9.

Note that generating an episode using policy π means that the action selection at each

state is guided by the policy π.

3.5.2 Monte Carlo Control

The policy evaluation algorithm above proceeds by estimating state-value function (V π).

If the objective is to approximate the optimal value and policy, one needs to work

with action-value function (Q). Indeed, knowing the values of actions separately is
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Initialize Q(s, a) arbitrarily (e.g. Q(s, a) = 0)

Select a random policy π

Returns(s, a) = empty list

Repeat m times (m = the number of episodes)

Generate an episode using π and exploring start

For each pair s, a in the episode

R = return following s, a

Append R to Returns(s, a)

Q(s, a) = Average(Returns(s, a))

For each s

π(s) = argmaxa∈AQ(s, a)

Return V and π.

Figure 3.10: MC exploring start

essential to suggest better policies. A simple MC control algorithm might have the

same structure as the policy iteration DP algorithm presented in Section 3.3.2. That

is, it starts from an arbitrary policy π0 then performs a complete evaluation to obtain

V π0 , then improves the policy to obtain policy π1, then evaluate it, and so on. This

simple algorithm suffers from two drawbacks. The first is that each iteration involves

a complete policy evaluation. The second is that nothing guarantees that exploration

will be maintained. The first problem can be solved in the same spirit as value iteration

(Section 3.3.3). The idea is to halt the evaluation of each policy after only one episode.

One simple way to solve the second problem is to let each episode start from a different

state-action pair, that is, every pair has a non-zero probability to be selected in the

beginning of an episode. This trick is called exploring start. Applying these two ideas

gives rise to a MC control algorithm called MC exploring start (Figure 3.10).

3.5.3 On-policy and Off-policy Methods

The exploring start condition of the previous algorithm assumes that each episode

starts by a different state-action pair. This assumption is not always applicable and

in situations where it is applicable, it is not always an efficient solution to maintain

exploration. In this section, we investigate two more efficient and attractive techniques

to guarantee continual exploration called on-policy and off-policy methods1.

1On-policy and off-policy methods are not specific to Monte Carlo approach. They are used with

other kinds of algorithms such as temporal difference.
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Initialize Q(s, a) arbitrarily (e.g. Q(s, a) = 0)

Select a random ε-soft policy π

Returns(s, a) = empty list

Repeat m times (m = the number of episodes)

Generate an episode using π

For each pair s, a in the episode

R = return following s, a

Append R to Returns(s, a)

Q(s, a) = Average(Returns(s, a))

For each state s

a∗ = argmax
a∈A

Q(s, a)

For each action a

π(s, a) =

{

1 − ε+ ε
|A(s)| if a = a∗

ε
|A(s)| if a 6= a∗

Return V and π.

Figure 3.11: ε-soft on-policy MC

The idea of on-policy methods is to use the same policy for making decision and

for policy improvement. In order to ensure a continual exploration, this same policy

is generally soft, that is, for each state, it keeps a non-zero probability to select any

action (∀s ∈ S,∀a ∈ A, π(s, a) > 0). In particular, for a given ε (0 < ε < 1), a soft

policy which guarantees that each action has a probability at least ε
|A| to be selected is

called ε-soft policy (∀ s ∈ S,∀ a ∈ A, π(s, a) ≥ ε
|A|). The sample algorithm we present

as an example of on-policy MC is called ε-soft on-policy MC algorithm. This algorithm

starts from an ε-soft policy and attempts to improve it gradually by making it move

towards an ε-greedy policy. Since an ε-greedy is by nature a soft policy, exploration

will always be guaranteed. The ε-soft on-policy MC algorithm is given in a procedural

form in Figure 3.11.

Off-policy methods, on the other hand, follow a different approach. They behave

according to one policy while estimating and improving another policy. Hence explo-

ration is maintained through the first policy while estimation of the optimal policy is

guaranteed via the second policy. A very famous algorithm with an off-policy approach,

called Q-learning, is presented in the next section.
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Initialize V arbitrarily (e.g. V (s) = 0)

π = policy to be evaluated

Repeat for each episode

Initialize s

Repeat for each step in the episode

a = π(s)

Take a, observe r′, s′

V (s) = V (s) + α [r′ + γ V (s′) − V (s)]

s = s′

Return V .

Figure 3.12: TD(0) policy evaluation

3.6 Temporal Difference

Temporal difference [46, 19] is a set of learning algorithms combining the ideas of dy-

namic programming and Monte Carlo. As dynamic programming, temporal difference

(TD) updates the estimates based on the estimates of successor states (backup). As

Monte Carlo, temporal difference can learn directly from raw experience by simply in-

teracting with the environment. Temporal difference differs from Monte Carlo in that

they it does not wait until the end of the episode to get the final return and to update

the value function. Instead, it can choose to perform the update after one step, two

steps, etc. Of particular interest is the case where the updates are performed after

only one step. The first three algorithms we present in this section, namely Temporal

Difference (0) (TD(0)), Sarsa, and Q-learning, belong to this category.

3.6.1 TD(0)

The simplest policy evaluation TD algorithm is called TD(0) [52]. It uses the following

equation to update its value function.

V (st) := V (st) + α [rt+1 + γ V (st+1) − V (st)] (3.8)

where 0 < α < 1 is called the step-size parameter or the learning rate factor. A careful

reading of this equation shows how TD(0) combines dynamic programming and Monte

Carlo ideas. Indeed, on one hand, the rule uses an estimation of the next state V (st+1) to

update V (st). On the other hand, it uses a sample return, rt+1, instead of the expected

reward (
∑

a∈A π(s, a)Ra
s). The amount between brackets in Equation (3.8) represents
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Initialize Q(s, a) arbitrarily (e.g. Q(s, a) = 0)

Repeat for each episode

Initialize s

Choose action a from s using an action selection method (e.g. ε-greedy)

Repeat for each step in the episode

Take action a, observe r′, s′

Choose action a′ from s′ using an action selection method (e.g. ε-greedy)

Q(s, a) = Q(s, a) + α [r′ + γ Q(s′, a′) −Q(s, a)].

s = s′

a = a′

For each state s ∈ S, π(s) = arg max
a∈A

Q(s, a)

Return V and π.

Figure 3.13: Sarsa

the error experienced during the current step. Hence, the value of the current state st
is updated by adding this error to the old value weighted by the step size parameter

α. The step size parameter controls the rate by which the learning happens. Very

often, the step size parameter should not be constant. Indeed, it is more convenient to

consider a variable α. A well-known result in stochastic approximation theory states

that, in order to obtain convergence, two conditions are required for α:

∞∑

k=1

αk(s, a) = ∞ and
∞∑

k=1

α2
k(s, a) <∞

where αk(s, a) is the value of α when action a is selected from state s for the kth time.

Figure 3.12 illustrates TD(0) algorithm for estimating V π.

3.6.2 Sarsa

TD(0) is a policy evaluation algorithm that learns values of states V π(s) ∀ s ∈ S. As

usual, if one wants to find the optimal policy, the best approach is to concentrate on

learning action-values. The Sarsa algorithm [44] uses the same update rule of TD(0)

(Equation (3.8)) but applied to state-action pairs :

Q(st, at) = Q(st, at) + α [rt+1 + γ Q(st+1, at+1) −Q(st, at)]. (3.9)

For the purpose of moving toward the optimal policy, Sarsa algorithm combines at

each episode policy improving and policy evaluation. The approach it uses to tradeoff
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Initialize Q(s, a) arbitrarily (e.g. Q(s, a) = 0)

Repeat for each episode

Initialize s

Repeat for each step in the episode

Choose action a from s using an action selection method (e.g. ε-greedy)

Take action a, observe r, s′

Q(s, a) = Q(s, a) + α [r + γ max
a′∈A

Q(s′, a′) −Q(s, a)]

s = s’

For each state s ∈ S, π(s) = arg max
a∈A

Q(s, a)

Return V and π.

Figure 3.14: Q-learning

exploration and exploitation is an on-policy method. Hence Sarsa is an on-policy one-

step temporal difference control algorithm (Figure 3.13). The on-policy aspect of Sarsa

is exhibited through the fact that the same action is used for behavior (a = a′) and for

updating.

3.6.3 Q-learning

Q-learning [61] is an off-policy one-step TD control algorithm. Separate policies are

used for making decisions and for estimating the optimal policy. The action-value

function update rule is slightly different from that of Sarsa:

Q(st, at) = Q(st, at) + α [rt+1 + γ max
a′∈A

Q(st+1, a
′) −Q(st, at)]. (3.10)

The main difference is that the Q-learning updates the value of the current state by the

action with the maximum estimated value in the next state. A different action may be

selected from that next state in the next step. This is the manifestation of the off-policy

approach of Q-learning. The complete Q-learning algorithm is given in Figure 3.14.

Q-learning algorithm was introduced by Watkins [61]. Later on, Rummery and

Niranjan [44] proposed a modified version of the same algorithm they called modified

Q-learning that Sutton [55] named Sarsa.
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Initialize V arbitrarily (e.g. V (s) = 0)

Initialize e(s) = 0 for all states

Repeat for each episode

Initialize s

Repeat for each step in the episode

a = π(s)

Take action a, observe r, s′

δ = r + γ V (s′) − V (s)

e(s) = e(s) + 1

For all states

V (s) = V (s) + α δ e(s)

e(s) = e(s) + γ λ e(s)

s = s′

Return V and π.

Figure 3.15: TD(λ)

3.6.4 TD(λ)

The algorithms presented so far in this section are one-step temporal difference. These

are located in one extreme case where the backup is performed after only one step. The

other extreme case is when the backup is performed at the end of the episode, which

corresponds to Monte Carlo methods. Between these extreme cases, one can consider

backups after two steps, three steps, etc. In general, the n-step return, noted R(n)

t , is

defined as:

R(n)

t = rt+1 + γ rt+2 + γ2 rt+3 + . . .+ γn−1 rt+n + γn Vt(st+n).

The idea of TD(λ) policy evaluation algorithm [61] is to average different n-step

returns :R(1)

t , R
(2)

t , etc. Each n-step return is weighted proportionally to λn−1, where

0 ≤ λ ≤ 1. Hence the average return, called λ-return, is defined as:

Rλ
t = (1 − λ)R(1)

t + (1 − λ)λR(2)

t + (1 − λ)λ2R(3)

t + . . .

= (1 − λ)
∞∑

n=1

λn−1R(n)

t (3.11)

where (1 − λ) is a normalization factor which ensures that weights sum up to 12.

2Recall that 1 + λ + λ2 + λ3 + . . . = 1

1−λ
.
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This way of viewing TD(λ) (Equation (3.11)) is called the forward view [22]. Unfor-

tunately, this view is not directly implementable since at each step it needs knowledge

about what will happen many steps in the future. Instead, there is another view, called

the backward view [26, 52], which is computationally more attractive. In a nutshell,

the idea of the backward view is that instead of using future rewards to perform the

update, the changes experienced in the current state are propagated backwardly to the

previously visited states. For concreteness, an additional memory variable, called the

eligibility trace and noted et(s), is maintained for each state. Intuitively, since the back-

ward view is based on propagating a change backwards, the eligibility trace indicates to

which extent a state is eligible for performing an update. The more recently a state has

been visited, the more eligible it will be for update. The eligibility traces are initialized

to zero and then will be updated as follows:

et(s) =

{

γ λ et−1(s) + 1 if s = st
γ λ et−1(s) if s 6= st.

That is, in each step, the eligibility trace of the visited state st will be updated by

1, whereas the eligibility traces of all the remaining states will decay by γ λ. The

procedural form of the TD(λ) policy evaluation algorithm using eligibility traces is

given in Figure 3.15.

Finally, we note that eligibility traces can be used to design control algorithms such

as Q(λ) [61] and Sarsa(λ) [45].

3.7 Integrating Planning and Learning

Direct RL techniques such as Q-learning, Sarsa, and Monte Carlo learn optimal policies

without requiring a model of the MDP. The downside of these techniques, however, is

that they make an extremely inefficient use of the data they gather by interaction. In

applications where real world experience is costly, these techniques may produce poor

results. In this section, we still assume that the model of the MDP is not available but

we examine algorithms that proceed by learning the model. These techniques, generally,

combine planning and learning methods.
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Repeat

Select a state s and an action a at random

s′, r = model(s, a)

Q(s, a) = Q(s, a) + α [r + γ max
a′∈A

Q(s′, a′) −Q(s, a)]

Figure 3.16: Main loop of Q-planning

3.7.1 Q-planning

Q-planning is an algorithm which requires an estimated model of the MDP on which

it applies Q-learning algorithm. The Q-learning runs on simulated experience (model)

exactly as it does on real experience. Hence, model can be seen as a stochastic function

in S×A→ Π(S×R) that accepts as input a state s and an action a and returns a new

state s′ and a reward r. The main loop of Q-planning is illustrated in Figure 3.16. The

algorithm is more accurately called random-sample one-step Q-planning. This straight-

forward method to solve MDPs: first learn the model by exploring the environment and

next compute an optimal policy using one of the known algorithms (DP, MC, or TD)

has three serious problems. First, it makes an arbitrary separation between the model

learning phase and the optimal policy approximation phase. Second, it is not clear how

should the model learning phase gather data about the environment; random explo-

ration can be very inefficient. Third, since there is separation in the phases, if some

changes occur in the environment while the second phase is underway, the results will

not be consistent with the environment.

3.7.2 Dyna-Q

Dyna-Q [53, 54] is an algorithm which exemplifies the integration of planning and

learning methods. It shows how apparently distinct methods can be programmed to

work together. In particular, it combines model learning, direct RL, and planning

methods at each episode. Figure 3.17 shows the Dyna-Q algorithm in a procedural

form. Note that the action-value function (Q(s, a)) is updated several times in an

episode: one time by Q-learning and N times by Q-planning. Hence, both direct RL

and planning phases use the same algorithm: Q-learning. Whereas, the model learning

proceeds in the background.
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Initialize Q(s, a) and model(s, a) arbitrarily

Repeat for each episode

Initialize s

Repeat for each step in the episode

Select action a using ε-greedy

Take action a, observe r, s′

Q(s, a) = Q(s, a)+α [r+γ max
a′∈A

Q(s′, a′)−Q(s, a)]

Update model(s, a) with s′ and r

Repeat N times:

s = random state (already observed)

a = random action (previously taken in s)

s′, r = model(s, a)

Q(s, a) = Q(s, a)+α [r+γ max
a′∈A

Q(s′, a′)−Q(s, a)]

Figure 3.17: Dyna-Q

3.8 Conclusion

Among all methods presented in this chapter, TD are today the most used RL tech-

niques due to their simplicity of use. Indeed, most of TD algorithms involve a simple

and single equation that can be implemented by small computer programs and they

rely only on experience generated from interaction. In particular, Q-learning algorithm

introduced by Watkins [61] is considered as the most important breakthrough in RL.

The most attractive aspect of RL is the capability to learn the best strategy of

behaving (optimal policy) directly from real experience, that is, without a model of the

environment. This makes RL applicable in problems where very little information is

known about the environment but where interaction is possible. The problem we are

considering in this thesis belongs to this category. The next chapter shows how RL

is a suitable and interesting approach to quantify the divergence between stochastic

systems.



Chapter 4

Trace Equivalence Divergence

through Reinforcement Learning

4.1 Introduction

The principal contribution of this thesis is a new approach to estimate the difference

between stochastic systems. This chapter introduces the key ideas of this approach.

For simplicity and clarity, these ideas will be illustrated using the simplest equivalence

notion, namely, trace equivalence. Also, for concreteness, we suppose that we are facing

a formal verification problem where we want to check whether an implementation of a

system satisfies its pre-established formal specification. The implementation can be a

physical device, a program, a protocol, etc. It is noted simply “Impl”. The specification

refers to a representation of the perfect behavior of the system and is noted simply

“Spec”. We suppose that the internal structure of both “Impl” and “Spec” are LMPs

but the models of these LMPs are completely unknown. That is, we treat them as black-

boxes available only for interaction. The objective of this chapter is then to define a

“trace equivalence divergence” between “Impl” and “Spec”.

4.2 Stochastic Game

The approach we propose is based on RL. The idea is to let the divergence come as

a solution of an MDP. This MDP is defined in such a way that the optimal value can

be interpreted as the divergence between “Impl” and “Spec” and the optimal policy
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as tests that witness that divergence. In this section, we expose our approach in the

form of a one-player stochastic game, the player being the personification of the learning

algorithm, that is, the RL agent. Since the models of the processes are not available, the

player proceeds by interacting with the processes. This interaction consists basically

in selecting an action a, running it on both processes and then observe the result.

An action that yields different behaviors in “Impl” and “Spec” indicates a possible

divergence between them whereas an action that yields the same behavior indicates

a possible similarity. Since the player’s goal is to detect differences between the two

processes, the game should give him low reward when the processes behave the same

and high reward when they behave differently. However, we must be careful because the

processes are probabilistic and consequently the same process may behave differently

on different trials of the same action, which could lead the player to find a big difference

between identical processes. This will happen more likely when the choice at a state

is “wide”, more technically, when the entropy is high. Intuitively, high entropy in a

given state means several different transitions are possible after an action. For example,

consider the two states s1 and s2:

s1

a[ 1
4
]

a[ 1
4
]

a[ 1
6
]
a[ 1

6
]

a[ 1
6
]

• • • • •

s2

a[ 1
3
] a[ 2

3
]

• •

We assume that, for action a, both define a probability distribution on next-states

(
∑

s′∈S Ps1→s′(a) =
∑

s′∈S Ps2→s′(a) = 1). It is easy to see that s1 has more entropy

than s2. Indeed,

H(P a
s1

) = 2
1

4
log2

1

4
+ 3

1

6
log2

1

6
= 2.29 bits

H(P a
s2

) =
1

3
log2

1

3
+

2

3
log2

2

3
= 0.918 bits.

To compensate this uncertainty, we introduce a third process, called “Clone” which is

simply a copy of the specification (see Figure 4.1) and we include it in the game. As an

action yielding different behaviors in “Impl” and “Spec” indicates a possible divergence

between them, an action yielding different behaviors between “Spec” and “Clone” is

a manifestation of the entropy of process “Spec”. Consequently, the player will get a

high reward if “Impl” and “Spec” behave differently for some action, but this reward

could be cancelled if “Spec” and “Clone” also do.

These ideas are captured in the following stochastic game, which is graphically

represented in Figure 4.2 :
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Impl Spec Clone

Figure 4.1: Implementation, Specification, and Clone

Game0: Put the three systems (“Impl”, “Spec”, and “Clone”) in their initial states;

then

Step 1 : The player chooses an action a.

Step 2 : Action a is run on “Impl”, “Spec”, and “Clone”.

Step 3 : If a succeeds on the three processes; go to Step 1. Else the game ends and

the reward is computed as follows: a (+1) reward is given for different observations

between “Impl” and “Spec” added up with a (−1) reward for different observations

between “Spec” and “Clone”. That is, writing I for “Impl”, C for “Clone” and

Obs for observation, the immediate reward is equal to:

R := (Obs.I 6= Obs.Spec) − (Obs.Spec 6= Obs.C) (4.1)

where 0 and 1 are used as both truth values and numbers and Obs.P ∈ {X,×}

designates the observation obtained in process P .

Step 4 : Repeat until the episode ends on one of the three processes.

For example, if action a is executed on the three processes and observation 〈a×, aX, aX〉

is obtained (i.e., Failure in “Impl”, Successes in “Spec” and “Clone”), then an imme-

diate reward of (1 − 0) = (+1) is given. Notice that once an action fails in one of the

three processes, the game (episode) ends. Hence, the only scenario allowing to move

ahead is: 〈aX, aX, aX〉 which yields a null reward. It is easy to see that a non-null

reward can happen only at the end of the episode. As we will see in Chapter 6, for

more complex equivalence notions (trace equivalence being the simplest one), the game

will be modified to allow non-null rewards in the middle of the episode. However, we

will continue to reveal these rewards at the end of the episode in order to preserve the

markov property of the MDP.

This game has been inspired by the Kullback-Leibler divergence defined in Sec-

tion 2.4.1. Recall that the starting idea is that two processes are trace equivalent via

testing if, and only if, they yield the same probability distributions on observations
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Select action
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)
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Impl
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Store reward
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+1
 )
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Step 2


Step 3


Step 4


End of the

episode


Episode still
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Figure 4.2: The Stochastic Game

for any test generated from the given test grammar. Hence, a divergence between two

processes could be defined with the help of a divergence between the probability distri-

butions on test observations (e.g. by taking the maximum divergence over all tests).

Unfortunately, because of the high number of possible tests (on huge systems), the max-

imum value over all Kullback-Leibler divergences is not tractable. The stochastic game

(Game0) described earlier is actually a simulation of the tradeoff of the KL divergence.

To fix ideas, let us recall the KL divergence definition and then describe the analogy

with Game0. Let p and q be two probability distributions of a random variable with

alphabet A, then,

KL(p ‖ q) = H(p ‖ q) −H(p). (4.2)

The cross entropy between p and q, H(p, q), can be seen as how likely we can obtain

different observations when interacting (via some test t) with both “Impl” and “Spec”.

On the other hand, the entropy of the distribution p, H(p) can also be seen as a

quantification over the likelihood to obtain different observations when running the

same action on “Spec” twice. Thus, the game expresses the same kind of tradeoff as

the KL divergence. This is a first indication that one can derive from it the notion

of divergence we are looking for. Unfortunately, this “simple” form of the game does

not lead to a suitable notion of divergence. In particular, two kinds of problems may

happen: the undesirable zero value and the negative value problems.
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• 0
a[q]

• 1

Impl

• 0
a[p]

• 1

Spec

• 0
a[p]

• 1

Clone

Figure 4.3: A generic example.

4.2.1 Symmetry Problem

In order to be consistent with a notion of trace equivalence divergence, Game0 should

satisfy the two following properties:

1. if “Impl” and “Spec” are trace equivalent, then for any policy the expected reward

should be zero.

2. if “Impl” and “Spec” are not trace equivalent, then the expected reward of the

optimal policy should be strictly greater than zero.

Game0 does satisfy the first property but not the second. Consider the simple

generic example of Figure 4.3. The only possible policy is π = a. Following this policy

may yield eight possible observations:

O = {〈aX, aX, aX〉, 〈a×, aX, aX〉, 〈a×, a×, aX〉, 〈a×, aX, a×〉, 〈a×, a×, a×〉, 〈aX, a×, aX〉,

〈aX, aX, a×〉, 〈aX, a×, a×〉}.

Hence, the expected reward according to π can be expressed as:

Eπ(Reward) =
∑

obs∈O
P (obs)R(obs) (4.3)

where P (obs) is the probability to observe obs and R(obs) is the corresponding reward.

Since the observations 〈aX, aX, aX〉, 〈a×, a×, a×〉, 〈aX, a×, aX〉, and 〈a×, aX, a×〉 yield a



Chapter 4. Trace Equivalence Divergence through Reinforcement Learning 67

reward of 0, we have

Eπ(Reward) = P (〈aX, a×, a×〉)R(〈aX, a×, a×〉)

+P (〈a×, aX, aX〉)R(〈a×, aX, aX〉)

+P (〈aX, aX, a×〉)R(〈aX, aX, a×〉)

+P (〈a×, a×, aX〉)R(〈a×, a×, aX〉) (4.4)

= q (1 − p) (1 − p) (+1) + (1 − q) p p (+1)

+q p (1 − p) (−1) + (1 − q) (1 − p) p (−1)

= 2q2 − 2pq − q + p

= (p− q)(1 − 2p). (4.5)

Undesirable zero value According to Equation (4.5), the expected reward of policy

π is equal to 0 if p = q or 1−2p = 0. The first situation means that “Impl” and “Spec”

are trace equivalent which is the situation we expect. However, the second situation

implies that if p = 1
2
, then the expected reward will be 0 regardless of the value of q

(it can be different from p). Hence, “Impl” and “Spec” can be not trace equivalent

while the expected reward of π is zero, which is a non expected case. Intuitively,

p = 1
2

means that the probabilities to obtain aX and a× in “Spec” are equal. If we

turn to Equation (4.4), this implies that P (〈aX, aX, a×〉) = P (〈aX, a×, a×〉) and that

P (〈a×, aX, aX〉) = P (〈a×, a×, aX〉). Hence, the probabilities to obtain reward (−1) and

reward (+1) are equal which leads to an expected reward of 0. Since these kinds of

situations exhibit a form of symmetry, we call them symmetric cases1.

Negative Value Problem If “Impl” and “Spec” are not trace equivalent, the value of

the optimal policy should not only be different than zero but strictly positive. However,

as defined above, Game0 may yield to optimal policies having negative values. Let us

return to the example of Figure 4.3. According to Equation (4.5), the expected reward

for π = a, the only possible policy, may be negative in two situations. The first is when

q > 1
2

and p > q and the second is when q < 1
2

and p < q. Intuitively, this negative

value problem happens when the likelihood to obtain different observations between

“Spec” and “Clone”, which is due to the entropy of “Spec”, is more important than

the likelihood to obtain different observations between “Impl” and “Spec”.

1The symmetry problem is not specific to trace equivalence and can be observed with other equiv-

alence notions (see Chapter 6).
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4.2.2 Prediction

Because of these two problems, it is clear that the maximal possible expected reward of

Game0 will not lead to a notion of trace equivalence divergence, but we will show that

the following slight modification of Game0 will allow to get rid of these two problems

and will lead to a suitable notion of divergence.

Running action a on process “Spec” yields one of two possible observations aX or

a×. The idea is then to split the action a into two variants depending on its outcome

on process “Spec”. These two variants are noted simply aX and a×. Hence, a new

modified game, Gametrace, is defined based on Game0 as follows:

Definition 4.1. Gametrace is Game0 with Step 1 replaced by

Step 1’ : The player chooses an action a and makes a prediction on its success or

failure on “Spec”( Pred ∈ {aX, a×})

and the reward function is replaced by

R :=
(
Obs.Spec = Pred

)(
(Obs.I 6= Obs.Spec) − (Obs.Spec 6= Obs.C)

)
. (4.6)

For example, if aX is selected (Pred = aX) and the observation is 〈a×, aX, aX〉 we

obtain a reward of (aX = aX)((a× 6= aX) − (aX 6= aX)) = 1 (1 − 0) = 1, but for

〈a×, a×, aX〉, we obtain 0 (0 − 1) = 0.

As we will see in the next sections, splitting the action a, on one hand, will break

the symmetry of symmetric situations and, on the other hand, will guarantee that there

is a policy with a positive value in case the processes are different. To fix ideas, let us

reconsider the example of Figure 4.3. Since each action is split into two variants, we

will have two possible policies π = aX and π = a×. The expected reward values for

these policies are:

Eπ=aX(Reward) = P (〈a×, aX, aX〉)R(〈a×, aX, aX〉) + P (〈aX, aX, a×〉)R(〈aX, aX, a×〉)

= (1 − q) p2 − q p (1 − p)

= p (p− q).

Eπ=a×(Reward) = P (〈aX, a×, a×〉)R(〈aX, a×, a×〉) + P (〈a×, a×, aX〉)R(〈a×, a×, aX〉)

= q (1 − p) (1 − p) − (1 − q) (1 − p) p

= (1 − p) (q − p).
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It is easy to see that the symmetric case cannot happen anymore because

Eπ=aX(Reward) = Eπ=a×(Reward) = 0

is obtained only when p = q. Also, if Eπ=aX(Reward) < 0 then Eπ=a×(Reward) > 0

and vice-versa which guarantees that the optimal policy cannot have a negative value.

This modification, however, comes with a side effect which is the doubling of the number

of actions. Nevertheless, the impact of this duplication on the game (MDP) is not very

important since, as we will see later, both variants aX and a× will make a transition to

the same next state of the MDP. Hence, unlike the number of actions, the number of

states remains the same.

4.3 Constructing the MDP M

In reinforcement learning, the problems are typically formalized using MDPs. The MDP

on which the divergence between two LMPs (“Spec” and “Impl”) will be computed can

be straightforwardly obtained from Gametrace. In this section, we give the definition of

this MDP in terms of the conditional probabilities P Spec( . | . ) and P I( . | . ). P Spec(aX|τ)

(resp. P I(aX|τ)) is the conditional probability of observing the success of an action a

given a successfully executed trace τ in “Spec” (resp. in “Impl”)2. Using P Spec( . | . )

and P I( . | . ), we can give an alternative definition of trace equivalence between LMPs.

Definition 4.2. Two LMPs “Spec” and “Impl” with the same action set A are trace

equivalent if, and only if, ∀ a ∈ A,∀ τ ∈ A∗,

P Spec(aX|τ) = P I(aX|τ) and P Spec(a×|τ) = P I(a×|τ).

Since the models of “Spec” and “Impl” are not available, the conditional probabili-

ties P Spec( . | . ) and P I( . | . ) are initially unknown. It is by interaction that the learning

algorithm (the player in Gametrace) will “learn” their values and consequently learn

the MDP.

Definition 4.3. Let “Impl”, “Spec”, and “Clone” be three LMPs with the same set of

actions A. The MDP M induced by the three LMPs is a tuple (S, i, Act, PrM , R). The

state representation S is the set of accepted traces in “Spec” along with a Dead state:

S := {τ : A∗ | P Spec(τ) > 0} ∪ {Dead}.

2We write P C(aX|τ) and P C(a×|τ) for the conditional probabilities in “Clone”. This is for read-

ability and is no additional information since P C(aX|τ)=PSpec(aX|τ).



Chapter 4. Trace Equivalence Divergence through Reinforcement Learning 70

The initial state is i = ε (the empty sequence). The set of actions is:

Act := A× {X, ×}.

The next-state probability distribution PrM is the same for aX and a× (which we

represent generically with a-); it is defined below, followed by the definition of the

immediate reward. Let s = τ the state corresponding to the trace τ , then,

PrMs→s′(a
-) :=







P Spec(aX|s) P I(aX|s) PC(aX|s) if s′ = τ a

1 − P Spec(aX|s) P I(aX|s) PC(aX|s) if s′ = Dead

0 otherwise.

Ra-

s := P Spec(a-|s) ∆a-

s (4.7)

where • ∆aX

τ := PC(aX|τ) − P I(aX|τ), and

• ∆a×
τ := −∆aX

τ .

Whether it is aX which has been selected or a× (Step 1 of Gametrace), moving to

the next state s′ = τ a is possible only if the action a is accepted in the three processes.

However, refusing the action a on at least one of the three processes causes a transi-

tion to the Dead state. Hence the Dead state indicates the end of an episode. This

is formulated in the next state probability distribution PrM
s→s′(a

-) and PrMs→Dead(a
-) in

Definition 4.3. The definition of Ra-

s is obtained from Gametrace as follows. In the

case where a- = aX is chosen, then the reward is computed only if a succeeds in “Spec”,

that is, we get a (+1) reward on observation 〈a×, aX, aX〉, a (−1) on 〈aX, aX, a×〉, and

(+0) on observations 〈aX, aX, aX〉 or 〈a×, aX, a×〉. If a fails, the reward is (+0). Thus,

RaX

s = P I(a×|s) P Spec(aX|s) PC(aX|s)
︸ ︷︷ ︸

〈×, X, X〉 7→ (+1)

− P I(aX|s) P Spec(aX|s) PC(a×|s)
︸ ︷︷ ︸

〈X, X, ×〉 7→ (−1)

= P Spec(aX|s)
(
P I(a×|s) PC(aX|s) − P I(aX|s) PC(a×|s)

)

= P Spec(aX|s)
(
PC(aX|s) − P I(aX|s)

)

= P Spec(aX|s) ∆aX

s .

In the case where a× is chosen, the opposite mechanism is adopted, that is, the reward

is computed only if a fails in “Spec” and hence only the situations 〈aX, a×, a×〉 (+1)

and 〈a×, a×, aX〉 (−1) are relevant. Thus,

Ra×
s = P Spec(a×|s) ∆a×

s .

We therefore obtain Equation (4.7).
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Figure 4.4: The “Impl”, “Spec”, and “Clone” processes of a simple example.

Example 4.4. Consider the three processes of Figure 4.4. The MDP M induced by

these processes is illustrated in Figure 4.5. Each node represents a state of the MDP

M and is labelled with the corresponding trace. Each edge represents a transition from

one state s to the next s′ and is labelled with the probability PrM
s→s′(a

-) and with the

expected immediate reward Ra-

s . For example, if the agent is in state s1 = a and chooses

action c×, then with probability 9
100

it will make a transition to state s2 = ac and obtain

an immediate reward of 1
3
. To keep the Figure less complex, all transitions to the Dead

state with probability 1 and reward 0 have been omitted (e.g. PrM
i→Dead

(bX) = 1 and

RbX

i
= 0).

4.4 Main Theorem and Definition of div
trace

( . ‖ . )

The key idea of the proposed approach is that the MDP is constructed in such a way

that the optimal value coincides with the actual divergence between LMPs “Spec” and

“Impl”.

Theorem 4.5. Let M be the MDP induced by “Impl”, “Spec”, and “Clone”. If the

discount factor γ < 1 or the size of the MDP |M| <∞ then the optimal value V ?(i) ≥ 0,

and V ?(i) = 0 if, and only if, “Impl” and “Spec” are trace equivalent.

The proof of Theorem 4.5 is given in Section 4.5. In the light of this theorem, the

trace equivalence divergence between LMPs is defined as:

Definition 4.6. Let “Impl” and “Spec” be two LMPs and M their induced MDP. We

define their trace equivalence divergence as

divtrace(“Spec”‖“Impl”) := V ?(i).
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Figure 4.5: MDP induced by the Example 4.4 (all the transitions to the Dead state

with probability 1 and reward 0 are omitted).
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4.5 Proofs

Theorem 4.5 states that the optimal policy of the MDP M coincides with the divergence

between LMPs. Hence, the first step towards proving the theorem is to figure out the

formula of evaluating a policy π.

4.5.1 Value of a Policy in M

Let π be a policy. In order to define a formula for evaluating π on any state s, we start

from the Bellman Equation (Section 3.2.6). Recall that a- denotes generically aX and

a×.

V π(s) =
∑

a-∈Act
π(s, a-)

∑

s′∈S
PrMs→s′(a

-) (Ra-

s + γ V π(s′))

=
∑

a-∈Act
π(s, a-) (Ra-

s + PrMs→s.a(a
-) γ V π(s.a)). (4.8)

In the context of MDP M, we will focus on a particular type of policy that we call

test-policy. A test-policy is a deterministic (not stochastic) policy which has the form

π = a-
1a

-
2. . .a-

n. That is, it consists in choosing action a-
1 at state i = ε, action a-

2 at

state s = a1, action a-
3 at state s = a1a2, etc. Note that there is an abuse of language

when we say that a test-policy π is a policy of the MDP M because it specifies which

action to take only in states ε, a1, a1a2, . . . , a1. . .an. However, if we assume that there

exists an action “abort” in the MDP which transits with probability 1 to the Dead state

and yields a reward of 0. Then, the test-policy π can be extended to all the states of

the MDP such that for all states s /∈ {ε, a1, a1a2, . . . , a1a2. . .an} it consists in choosing

the action “abort”. Since there is no “abort” action in the MDP, one should take into

consideration this aspect of test-policy in the rest of the proof.

The value of the test-policy π = a-
1a

-
2 . . . a

-
n on i is thus determined as follows from

Equation (4.8):

V π(i) =
∑

a-∈Act
π(i, a-) (Ra-

i
+ PrM

i→i.a(a
-) γ V π(i.a))

= Ra-
1
ε + PrMε→a1

(a1) γ
(

Ra-
2
a1

+ PrMa1→a1a2
(a2) γ V

π(a1a2)
)

= Ra-
1
ε + PrM (a1) γ R

a-
2
a1

+ PrM (a1a2) γ
2 Ra-

2
a1a2

+ . . .

=
n−1∑

i=0

PrM (a0. . .ai) γ
i R

a-
i+1
a0. . .ai (4.9)
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where PrM (τ) is the probability to reach state s = τ from the initial state i, and a0

denotes ε.

4.5.2 Proof of Theorem 4.5

We prove in this section that solving the MDP induced by two LMPs “Impl” and “Spec”

yields an equivalence divergence between them (i.e., which is positive and has value 0

if and only if the two processes are trace equivalent). Let us first enounce this easy

lemma which will be useful in this section.

Lemma 4.7. The following are equivalent.

1. P I(aX|τ) = PC(aX|τ).

2. P I(a×|τ) = PC(a×|τ).

3. ∆a-

τ = 0.

The proof of this lemma is straightforwardly obtained from the definition of ∆a-

τ in

Definition 4.3.

From now on, we will use the notation a- to mean the opposite of a-, that is, if

a- = aX then a- = a× and if a- = a× then a- = aX.

Theorem 4.8. The following are equivalent:

(i) “Impl” and “Spec” are trace equivalent.

(ii) ∀a- ∈ Act, τ ∈ S\{Dead}, Ra-

τ = 0

(iii) ∀ test-policy π, V π(i) = 0.

Proof. (i) ⇒ (ii). By (i) and Definition 4.2, we have P Spec( . | . ) = P I( . | . ). Since τ is

a trace ∀ s 6=Dead, and since P Spec( . | . ) = PC( . | . ),

P Spec( . | . ) = P I( . | . ) ⇒ ∀a- ∈ Act, s ∈ S\{Dead}, PC(a-|τ) = P I(a-|τ)

⇔ ∀a- ∈ Act, τ ∈ S\{Dead}, ∆a-

τ = 0 (by Lemma 4.7)

⇒ ∀a- ∈ Act, τ ∈ S\{Dead}, Ra-

τ = 0. (by Equation (4.7))
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(ii) ⇒ (i). Let τ ∈ S\{Dead} be a state with trace τ . Let a- ∈ Act. Then by (ii)

and Equation (4.7), we have Ra-

τ = P Spec(a-|τ) ∆a-

τ = 0. This implies either ∆a-

τ = 0 or

P Spec(a-|τ) = 0. By Lemma 4.7 and Definition 4.2, we know that the first case implies

the result. The second case requires to see the opposite action. Indeed, P Spec(a-|τ) = 0

implies that P Spec(a- |τ) = 1. By (ii), Ra-

s = 0. By the same argument, we can deduce

that either ∆a-

τ = 0 or P Spec(a-|τ) = 0, and therefore that ∆a-

τ = 0. Since a- = a-, by

Lemma 4.7 (replacing a- by a- ), we have P I(a-|τ) = P Spec(a-|τ) which by Definition 4.2

implies the result.

(ii) ⇒ (iii). Follows from Equation (4.9).

(iii) ⇒ (ii). Fix a- ∈ Act and τ ∈ S\{Dead} such that a1 . . . an = τ . Now, define the

test-policy π = a-
1 . . . a

-
n. By Equation (4.9), we have V πa-

(i)− V π(i) = PrM (τ) γn Ra-

τ .

By (iii) we will have PrM (τ) γn Ra-

τ = 0. Since γ > 0, if PrM (τ) 6= 0 then Equa-

tion (4.7) will imply the result. So, by way of contradiction suppose PrM (τ) = 0.

This implies that P I(τ) = 0 because, by definition of the MDP M, P Spec(τ) 6= 0

and because P Spec(τ) = PC(τ). Now let a1a2. . .ak be the smallest subsequence of τ

such that P I(a1a2. . .ak) = 0. Since P I(ε) = 1, k ≥ 1. Fix τ ′ = a1a2. . .ak−1, and

observe that both τ ′ and τ ′ak are states of the MDP M because P Spec(τ ′) 6= 0 and

P Spec(τ ′ak) 6= 0. By the hypothesis and Equation (4.9), we have 0 − 0 = V a-
1a

-
2. . .a-

k(i) −

V a-
1a

-
2. . .a-

k−1(i) = PrM (τ ′) γn R
a-

k

τ ′ . Since, by construction, PrM (τ ′) 6= 0, we therefore

have that R
a-

k

τ ′ = 0. It then follows from Equation (4.7) that ∆
a-

k

τ ′ = 0, and hence

that P I(a-
k|τ

′) = PC(a-
k|τ

′). On an other hand, P I(a-
k|τ

′) = 0, because P I(τ ′) 6= 0 and

P I(τ ′ak) = 0. Thus, PC(a-
k|τ

′) = 0, which in turn implies that PC(τ ′ak) = 0, and

therefore that P Spec(τ ′ak) = 0. A contradiction.

Theorem 4.9. Two LMPs are not trace equivalent if and only if V π(i) > 0 for some

test-policy π of the MDP M.

Proof. (⇒): by Theorem 4.8, we have that V π(i) 6= 0 for some test-policy π =

a-
1a

-
2 . . . a

-
n. Define the set of indices J as follows:

J := {j ∈{1, . . . n} | R
a-

j
a1...aj−1 = P Spec(a-

j|a1 . . . aj−1) ∆
a-

j
a1...aj−1<0},

and note that P Spec(a-
j|a1 . . . aj−1) > 0 and ∆

a-
j
a1...aj−1< 0 for any j ∈ J . Thus, for any

such j, ∆
a-
j
a1. . .aj−1 > 0. Let π1 be the policy obtained from π by replacing each action a-

j

where j ∈ J by a-
j. Then, by Equation (4.9) and Equation (4.7), V π1(i) > 0, as desired.

(⇐): follows from Theorem 4.8.

Lemma 4.10. For every test-policy π, for every a- ∈ Act,

V π(i) ≤ V πa-(i) or V π(i) ≤ V πa-(i).
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Proof. As for Theorem 4.9, the result follows from Equation (4.9) and the fact that

∆a-

τπ = −∆a-

τπ where τπ is the trace corresponding to test-policy π (if π = a-
1 . . . a

-
n then

τπ = a1. . .an).

Theorem 4.11. If the discount factor γ < 1 or the size of MDP |M| < ∞ then

V ?(i) ≥ V π(i) for any test-policy π.

Proof. If |M| <∞, since M has a tree structure, the result is a direct consequence of

Lemma 4.10. Otherwise, it is sufficient to show that

∀ε > 0 ∀ test-policy π ∃ policy π′ such that V π′
(i) < V π(i) − ε.

Let ε > 0 and π = a-
1 . . . a

-
n be a test-policy. Because of Lemma 4.10, w.l.o.g., we

may suppose n to be large enough to satisfy
∑∞

i=n+1 γ
i < ε. Since on each episode,

the reward signal is (−1), (0) or (+1), it is easy to see that any policy π ′ of M that

coincides with π on the states ε, a1, a1a2, . . . , a1a2. . .an will have the desired property.

If “Impl” and “Spec” are trace equivalent, Theorem 4.8 implies that V ?(i) = 0. If

they are not trace equivalent, Theorem 4.9 implies that there exists at least a test-policy

π such that V π(i) > 0. By Theorem 4.11, we can conclude that V ?(i) > 0.

Theorem 4.5. Let M be the MDP induced by “Impl” and “Spec”. If the discount

factor γ < 1 or the size of MDP |M| < ∞ then the optimal value V ?(i) ≥ 0, and

V ?(i) = 0 if, and only if, “Impl” and “Spec” are trace equivalent.

4.6 PAC Guarantee and Experimental Results

Reinforcement learning algorithms are based on sampling. Hence, the precision of the

result depends on the number of times the task is repeated, that is, the number of

episodes. In this section, we discuss the guarantees we can provide for the precision of

the returned result along with the empirical analysis we performed on different LMPs.
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4.6.1 PAC Guarantee

As described in the previous sections, the key idea of our approach is to define an MDP

out of the processes to be tested and to interpret the optimal value of this MDP as

a divergence between them. If the model of the MDP is completely known and its

size is tractable, then one can use dynamic programming to obtain the exact value of

the divergence. However, if the MDP model is either huge or not available, then it

might be impossible to obtain such exact value. In such situations, a reinforcement

learning (RL) algorithm based on sampling such as Q-learning can still be tractable.

Q-learning is a temporal difference control algorithm which directly approximates V ∗(i).

Since it is based on sampling, the Q-learning algorithm returns an estimation of the

actual optimal value (V π̂(i)). The precision of this estimation depends on the number of

episodes the algorithm performs. Hence, from that perspective, one needs a guarantee

on the precision of the returned result such as PAC guarantee.

Definition 4.12. We say that we have a PAC (Probably Approximately Correct) guar-

antee for a learning algorithm on an MDP M if, given an a priori precision ε > 0 and a

maximal probability error δ, there exists a function f(MK , ε, δ) such that if the number

of episodes is greater than f(MK , ε, δ), then

Prob{|V π̂(i) − V ?(i)| ≤ ε} ≥ 1 − δ (4.10)

where π̂ is the policy returned by the learning algorithm and V π̂(i) is the estimation of

V π̂(i) given by this algorithm.

Q-learning has been proven to converge to the optimal value but unfortunately,

unless we wait until infinity, there are few results on the precision of the solution (PAC

guarantee). Indeed, one can compute a lower bound for the optimal policy of the MDP

M while the upper bound, as far as it concerns our setting, remains intractable.

This implies that if the two processes are trace equivalent, the Q-learning algorithm

is not the best strategy to compute the divergence. On the other hand, if the two

processes are not trace equivalent, an RL algorithm such as Q-learning will be among

the most efficient algorithms to find a policy whose value is greater than zero. A lower

bound can then easily be obtained using Hoeffding inequality based on the following

idea. Let π̂ be the policy returned by the RL algorithm. Let V π̂(i) be the estimation of

V π̂(i) using a Monte Carlo [51] algorithm with m episodes. Given ε, δ ∈]0, 1[, according

to the Hoeffding inequality, if m ≥ 1
ε2

ln(2
δ
), we have

Prob{|V π̂(i) − V π̂(i)| ≤ ε} ≥ 1 − δ. (4.11)
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Figure 4.6: Optimal value convergence for trace equivalent processes

Since V π̂(i) never exceeds the optimal value V ?(i), we have the following PAC lower

bound:

Prob{V ?(i) ≥ V π̂(i) − ε} ≥ 1 − δ. (4.12)

Thus, at any time during the execution of the RL algorithm, one can extract its current

(sub-optimal) policy π̂ and, via Equation (4.12), obtain a lower bound on V ?(i) via

Monte Carlo. If this lower bound is strictly positive, then π̂ witnesses the difference

between “Impl” and “Spec”. This witness is important. For example, if “Impl” is

some approximation of “Spec”, then π̂ shows to the user “where to look” if he wants

to construct a better approximation of π̂.

Finally, observe that if V π̂(i) is too close to zero, or exactly zero, then the Hoeffding

inequality gives no guarantee on the trace equivalence or non equivalence.

4.6.2 Experimental Results

The approach described so far has been implemented with the Q-learning algorithm.

The program takes as input two files representing “Impl” and “Spec” LMPs and approx-

imates their trace equivalence divergence by only interacting with them (their internal

structure is used only to interact with them). In order to guarantee a good perfor-

mance of the Q-learning algorithm, we performed a tuning of its parameters. The

tuning process is summarized in Appendix A. The discount factor γ is fixed to 0.8.

Two action selection methods have been experimented: ε-greedy and SoftMax. For

both methods, we tried several functions to vary the ε and the τ parameters. The

combination that produced the best results is SoftMax such that the temperature τ is

decreasing from 5 to 0.01 according to the function : τ = k
currentEpisod+l

where k and
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Figure 4.7: Optimal value convergence for non trace equivalent processes

] of ] of ] of ] of

states actions actions/state transitions/state

Process 1 17 5 1 - 5 1 - 6

Process 2 24 5 1 - 5 2 - 10

Process 3 32 7 1 - 7 2 - 12

Process 4 97 9 1 - 9 2 - 15

Process 5 166 10 2 - 3 10 - 20

Process 6 200 11 6 - 10 15 - 30

Process 7 207 11 4 - 9 8 - 13

Process 8 519 13 1 - 13 2 - 25

Process 9 944 13 1 - 10 1 - 30

Table 4.1: Characteristics of the randomly generated LMPs.

l are constants. As mentioned in Section 3.6, the learning rate α must decrease in

order to assure convergence of the Q-learning algorithm. We tried several decreasing

functions and the best convergence results were obtained with the function 1
x

where x

is the number of times the state-action pair has been visited.

As mentioned above, for our application, the RL algorithm (Q-learning) is initially

in charge of finding a policy whose value is greater than zero and, if the MDP M is

not too big, to estimate with high precision the optimal value, that is, our divergence

notion. Figure 4.6 and Figure 4.7 show how the Q-learning algorithm converges to

the optimal policy value on a randomly generated LMP (Process 1 in Table 4.1) when

running the algorithm for 50 000 episodes. The convergence happens smoothly both in

the first case, when P1 and P2 are exactly the Process 1 and in the second case, when

P2 has been slightly modified from the original LMP.
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Episodes Precision ε Value of the approximation Bottom bound

of the optimal policy (V π̂(i)) (V π̂(i) − ε)

Process 1 5 ∗ 104 0.005 0.17869 0.17369

Process 2 106 0.005 0.00156 -0.00344

Process 3 107 0.005 0.07625 0.07125

Process 4 2 ∗ 107 0.001 0.00720 0.00620

Process 5 2 ∗ 107 0.0005 0.00105 0.00055

Process 6 3 ∗ 106 0.001 0.01979 0.01879

Process 7 5 ∗ 106 0.001 0.01990 0.01890

Process 8 107 0.001 0.00263 0.00163

Process 9 108 0.0005 0.00014 -0.00036

Table 4.2: The results of running our divergence algorithm on slightly different LMPs.

π̂ is the optimal policy returned by the Q-learning algorithm. V π̂(i) is the Monte Carlo

estimation of V π̂(i).

To check if, in practice, our algorithm can rapidly find differences between slightly

different LMPs, we made a series of experiments on randomly generated LMPs. The

tool we used to randomly generate LMPs [65] is very flexible and it accepts several

parameters, namely, the number of states, the number of actions, a range for the num-

ber of actions leaving a state, and a range of the number of transitions leaving a state.

Table 4.1 shows the values of these parameters for the 9 processes used in our experi-

mentation.

The experimentation consists in comparing each process with a slightly modified

version of the same process. The modification consists in the following. We choose

at random a state s and a transition leaving that state to another state, let’s say, s′.

Then, we replace the state s′ in the transition with a third state s′′ selected randomly.

Table 4.2 shows the result of this experimentation. For each process (Column 1),

Column 2 indicates the number of episodes used by the algorithm, Column 3 the selected

precision ε of the PAC lower bound of Equation (4.12) while the confidence value δ is

fixed to 0.05 for all processes. The Monte Carlo estimation of the value of the optimal

policy returned by the Q-learning algorithm (π̂) is given in Column 4. The lower bound

for the divergence value is given in Column 5. Note that this lower bound is positive for

all processes except for 2 and 9. This tends to confirm that, in practice, the algorithm

is able to detect slight differences. In the case of Process 2, the negative lower bound

can be explained by the extremely small probability to reach the modified state from

the initial state. For Process 9, however, the negative lower bound can be explained by

the fact that the divergence was too small to be detected after 108 episodes.
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The small values in Column 4 (the value of the approximation of the optimal policy)

reflects the modifications performed on the processes. For example, in Process 8, there

are 519 states, only one state has been slightly tampered with. For all these examples,

except 2 and 9, the algorithm was able to identify precisely the modification we per-

formed. Indeed, for most examples, the returned optimal policy indicates the trace to

the modified state.

4.7 Conclusion

The main contribution of this thesis is a new framework to quantify the divergence

between stochastic processes based on reinforcement learning. The idea is to define an

MDP out of the processes to be compared in such a way that its optimal value can be

interpreted as a divergence between the two. In this chapter, we defined the elements of

this MDP and we provided the formal proofs asserting that its optimal value is zero if

the processes are equivalent and strictly positive otherwise. The rest of the chapters can

be seen as a generalization of the ideas presented in this chapter. This generalization

follows two directions. On one hand, Chapter 5 and Chapter 6 show how the approach

can be extended to other equivalence notions. On the other hand, Chapter 7 presents a

generalization to the stochastic formalisms used in artificial intelligence such as MDPs,

POMDPs, PSRs, etc.



Chapter 5

K-moment Equivalence

5.1 Introduction

For many applications, trace equivalence does not discriminate enough. Bisimulation

is more powerful. However, testing bisimulation requires a very expensive form of test

that needs to maintain an arbitrary number of replicas of states in memory. This is a

well known argument against bisimulation which is usually considered too strong. In

this chapter, we propose equivalence notions that do not require recursive replication.

In particular, we come up with a new family of equivalence notions that lie between

trace equivalence and bisimulation. This new family of equivalence notions constitutes

a good compromise between trace (too weak) and bisimulation (too strong) and more

importantly, it fits very well in the MDP framework described in the previous chapter.

The chapter starts by illustrating the problem with bisimulation.

5.2 Recursive Replication

The test construct (t1, . . . , tn) of the test language TLS (Definition 2.12) consists in

making n copies of the current state and then execute test ti on the ith copy for i =

1 . . . n. Each one of these tests may in turn need to create copies of the next states.

The recursive aspect makes bisimulation very difficult to check in practice. Indeed, this

construct requires to make n replicas of the current state and to execute a test on each

replica. Since this construct is defined recursively on tests, there is no bound on the

number of replicas that must be kept in memory. Probabilistic bisimulation cannot be
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Figure 5.1: Trace equivalent but not bisimilar processes

characterized without the recursive replication construct. The example in Figure 5.1

shows intuitively why. A test distinguishing T1 and T2 must use the recursive replication

construct to express that both b and c can be performed from the same state. Indeed,

the test c.a.(b.ω, c.ω) from TLS distinguishes between them.

In the case of non-deterministic stochastic processes, Kwiatkowska and Norman [29]

proposed a testable equivalence notion which is weaker than bisimulation. The test

grammar is inspired from the one of bisimulation (TLS) where they impose an inde-

pendence restriction on the tests of the form (t1, . . . , tn). However, the proposed test

grammar still uses recursive replication.

Trace equivalence, contrarily to bisimulation, can be tested without the need to

create replicas recursively, but for many applications, it does not discriminate enough.

For instance, it cannot discriminate between the two processes of Figure 5.1. Indeed,

T1 and T2 accept all traces {a, ca, cab, cac} with the same probabilities, 1, 1, 1
3
, and 2

3

respectively. One may wonder if equivalences without recursive replication can catch

this difference. Such equivalences, if they can be tested efficiently, could be a good

compromise between the fact that bisimulation is very costly to test and the fact that

trace equivalence does not discriminate enough.

In this chapter, we propose a family of equivalence notions, called K-moment, that

catch these kinds of differences and make sure to limit the number of replicas. More

generally, we refer to equivalences that do not create replicas recursively as recursive

replication free equivalences or RRF for short. Each one of the next sections present

this family of equivalences from a different point of view.
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5.3 The Test Grammar TKmoment0

We first present our family of equivalencesK-moment through a testing framework. The

test grammar TKmoment0 we propose is a weakening of TLS that yields a RRF equivalence.

It comes with a replication construct that only appears at the end of a trace. We

will show later on that this grammar is equivalent with an apparently stronger one

(TKmoment) where one replicates actions at every step of a trace (but no copy is kept in

memory). The role of the parameter K will also be explained later.

Definition 5.1. Let K ∈ N
∗. For k ≤ K, define:

TKmoment0 t ::= ω | a.t | ak

where ω and a.t are the same as in Ttrace (Definition 2.7) whereas test ak consists

in running action a on k copies of the current state and then stop. The observation

function O for TKmoment0 is defined as follows:

• Oω = {ωX}

• Oa.t = {a×} ∪ {aXe | e ∈ Ot}

• Oak = Oa ×Oa × . . .×Oa
︸ ︷︷ ︸

k times

= (Oa)
k

where Oa = {aX, a×}.

For 0 ≤ j ≤ k, the probability distribution for observations of the test ak is:

Qs
ak(a

X, . . . , aX

︸ ︷︷ ︸
j

, a×, . . .a×
︸ ︷︷ ︸

k−j

) = Ps→S(a)j (1 − Ps→S(a))k−j

where the order of successes and failures is not significant.

Since the execution of a single action a may yield 2 different observations aX or a×,

action ak yields 2k different observations. For example, executing a2 has 22 possible

observations: {(aX, aX), (aX, a×), (a×, aX), (a×, a×)}.

The observation function O yields a natural observation set for TKmoment0 where the

outcome of all the k occurrences in ak are considered. However, a simpler observation

function (Θ) for TKmoment0 has the same distinguishing properties as O. The idea is to

group observations of O to produce a smaller set of observations for TKmoment0 (grouping

of observations is discussed with further details in the next chapter).
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Definition 5.2. We define an alternative observation function for the test grammar

TKmoment0 as:

• Θω = Oω = {ωX}

• Θa.t = {a×} ∪ {aXe | e ∈ Θt}

• Θak = {akX

, ak×}

such that akX

is the observation that all k executions of a succeeded, and ak× is the obser-

vation that at least one execution has failed. The probability distribution on observations

for ak, Qs
ak

, is:

Qs
ak

(akX

) = Ps→S(a)k

Qs
ak

(ak×) = 1 − Ps→S(a)k.

For example, if k = 2, the set of four observations of Oa2 , that is, {(aX, aX), (aX, a×),

(a×, aX), (a×, a×)} will be grouped into 2 observations in Θa2 = {a2X

, a2×}; observation

a2X

corresponds to (aX, aX) whereas a2× corresponds to the remaining observations:

{(aX, a×), (a×, aX), (a×, a×)}.

Before proving that both observation functions define the same equivalence, we need

the following simple lemma.

Lemma 5.3. For any test t = τ.ak and any observation obs = τX(a-, . . . , a-), we have

Qs
t(obs) =

∑

s′∈S
Ps→s′(τ)Q

s′
ak(a

-, . . . , a-)

where τX stands for the observation that all actions of τ have succeeded.

Proof. The proof of this lemma is a straightforward induction based on the following

(induction hypothesis is applied in the second step)

Qs
t(a

X

1 . . .aX

n (a-, . . . , a-)) =
∑

s′∈S
Ps→s′(a)Q

s′
a2. . .an.ak

(aX

2 . . .aX

n (a-, . . . , a-))

=
∑

s′∈S
Ps→s′(a)

∑

s′′∈S
Ps′→s′′(a2. . .an)Q

s′′
ak (a

-, . . . , a-)

=
∑

s′′∈S
Ps→s′′(τ)Q

s′′
ak (a

-, . . . , a-).
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Theorem 5.4. Two LMPs yield the same probability distribution on observations for

any test of TKmoment0 according to the observation function O if, and only if, they yield

the same probability distributions on observations according to the observation function

Θ.

Proof. (⇒). Straightforward since the set of Θ is obtained by grouping one or more

observations of O.

(⇐). Let L1 = (S1,A, i1, P ) and L2 = (S2,A, i2, P
′) be two LMPs. Let t = τ.ak

(τ ∈ A∗) be a test yielding different probability distributions on observations for L1 and

L2 according to O. It is sufficient to prove that the same test yields different probability

distributions on observations for L1 and L2 according to Θ. Let obs = τX(a-, . . . , a-) be

an observation from Ot such that QL1
t (obs) 6= QL2

t (obs) and suppose, w.l.o.g, that k is

minimal, that is, for any n < k and tn = τ.an, QL1
tn (τX(a-, . . . , a-)) = QL2

tn (τX(a-, . . . , a-)).

Let j be an integer in 0 . . . k. W.l.o.g, we suppose that obs = τX(aX, . . . , aX

︸ ︷︷ ︸
j

, a×, . . . , a×
︸ ︷︷ ︸

k−j

)).

Hence, by Lemma 5.3

QL1
t (obs) =

∑

s∈S1

Pi1→s(τ)Ps→S1(a)
j(1 − Ps→S1(a))

k−j

=
∑

s∈S1

Pi1→s(τ)Ps→S1(a)
j − c1

∑

s∈S1

Pi1→s(τ)Ps→S1(a)
j+1

+c2
∑

s∈S1

Pi1→s(τ)Ps→S1(a)
j+2 −

...

(−1)k−j
∑

s∈S1

Pi1→s(τ)Ps→S1(a)
k

where c1, c2, . . . are integer constants. By the minimality of k, we have :

QL1
t (obs) −QL2

t (obs) = (−1)k−j
( ∑

s∈S1

Pi1→s(τ)Ps→S1(a)
k −

∑

s∈S2

Pi2→s(τ)P
′
s→S2

(a)
k)

= (−1)k−j
(
QL1
t (τXakX

) −QL2
t (τXakX

)
)
.

Hence, QL1
t (τXakX

) 6= QL2
t (τXakX

). Since τXakX

∈ Θ(τ.ak), the test τ.ak yields different

probability distributions on observations according to Θ.

5.4 Moments Coincidence

Now that we have a testing equivalence, we are interested in providing a structural

equivalence on LMPs that corresponds to it. In this section we show that the grammar
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TKmoment0 characterizes an equivalence notion based on the coincidence of moments of

a random variable, as its name suggests.

Definition 5.5. Let (S, i,A, P ) be an LMP, a ∈ A and τ ∈ A∗. We define Xτ,a :

S ∪{Dead} → [0, 1] the random variable representing the probability to perform action

a after having run trace τ . Dead is the outcome of the experiment of failing to perform

τ . More precisely,

{Xτ,a = p} = {s : Ps→S(a) = p} for any p ∈]0, 1]

{Xτ,a = 0} = {s : Ps→S(a) = 0} ∪ {Dead}

and

Pr(Xτ,a = p) = Pi→{s:Ps→S(a)=p}(τ) for any p ∈]0, 1]

Pr(Xτ,a = 0) = Pi→{s:Ps→S(a)=0}(τ) + (1 − Pi→S(τ)).

Remark 5.6. Note that Pr(Xτ,a=0) = 1 − Pr(Xτ,a> 0), as wanted. This implies that

the random variable Xτ,a is completely determined by the the values of Pi→{s:Ps→S(a)=p}(τ)

for p > 0.

On the other hand, the knowledge of the distribution of all random variables {Xτ,a}τ∈A∗,a∈A
completely determines the values of Pi→{s:Ps→S(a)=p}(τ) for p≥0, τ ∈A∗, a∈A. To prove

this assertion we only have to show that this is the case for p = 0. This follows from a

straightforward induction, based on the facts that (1) Pi→S(ε) = 1 and (2) the expected

value of Xτ,a is exactly Pi→S(τa).

At first sight, it is surprising to see a random variable taking probability values,

but recall that we are performing tests on processes and are indeed observing the

probabilities that these tests are accepted.

Recall that the ith moment of a random variable X is the expected value of X i

(written E(X i)) and that the expected value of a random variable X is the sum of

the probabilities of each possible outcome of the experiment multiplied by its payoff

(E(X) =
∑

i xiP (X = xi)). In the light of this remark, we introduce a family of

equivalence notions that correspond to coincidence between the random variables (XL1

τ,a

and XL2

τ,a) up to the kth moment. For that reason, we call them K-moment equivalences.

Definition 5.7. Let K ∈ N
∗. Two LMPs L1 = (S1, i1,A, P ) and L2 = (S2, i2,A, P

′)

are K-moment equivalent, if and only if, ∀ τ ∈ A∗,∀ a ∈ A, XL1

τ,a and XL2

τ,a have exactly

the same first K moments. That is,

E((XL1

τ,a)
k) = E((XL2

τ,a)
k) for k ≤ K,

or equivalently,
∑

s∈S1

Pi1→s(τ) (Ps→S1(a))
k =

∑

s∈S2

Pi2→s(τ) (P ′
s→S2

(a))k
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for k ≤ K.

We will discuss later the relative value of K and the equivalence obtained at the

limit, that is, as K −→ ∞. The following theorem states that K-moment equivalence

coincides with TKmoment0 .

Theorem 5.8. Two LMPs are K-moment equivalent if, and only if, they yield the same

probability distribution on observations of tests generated from TKmoment0.

Proof. (⇒). By contradiction. Let L1 = (S1, i1,A, P ) and L2 = (S2, i2,A, P
′) be

two LMPs. Let t = τ.ak a test of TKmoment0 yielding different probability distribution

on observations. Suppose, w.l.o.g, that t is minimal, that is, ∀obs ∈ Θτ , Q
L1
τ (obs)

= QL2
τ (obs). Hence, we have, QL1

t (τXakX

) 6= QL2
t (τXakX

) which implies that
∑

s∈S1

Pi1→s(τ) (Ps→S1(a))
k 6=

∑

s∈S2

Pi2→s(τ)(P
′
s→S2

(a))k

which in turn implies E((XL1

τ,a)
k) 6= E((XL2

τ,a)
k). By Definition 5.7, we can conclude that

L1 and L2 are not K-moment equivalent.

(⇐). Straightforward since Qt(τ
XakX

) = E((Xτ,a)
k).

Since T1-moment is exactly Ttrace, Theorem 5.8 and Theorem 2.8 imply the following

Corollary.

Corollary 5.9. 1-moment equivalence and trace equivalence coincide.

5.5 The Test Grammar TKmoment

As announced above, we now introduce a second test language that characterizes

K-moment equivalence. We present it because it has a more homogenous form than

TKmoment0 and because it fits in the generic framework we present in the next chapter.

The test language is called TKmoment and its definition is given with function Θ.

Definition 5.10. Let K ∈ N
∗. For k ≤ K, define:

TKmoment : t ::= ω | ak.t

where the test ak.t consists in running action a on k copies of the current state and

if the last action succeeds, proceed with test t on the last copy (and delete the other

copies). The observation set for ak.t according to Θ is:

Θak.t = {ak×} ∪ {ak×e | e ∈ Θt} ∪ {akX

e | e ∈ Θt}.
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The probability distribution on observations for ak.t is:

• Qs
ak.t

(ak×) = 1 − Ps→S(a)k

• Qs
ak.t

(ak×e) = (1 − Ps→S(a)k−1)
∑

s′∈S Ps→s′(a)Q
s′
t (e) where e ∈ Θt

• Qs
ak.t

(akX

e) = Ps→S(a)k−1
∑

s′∈S Ps→s′(a)Q
s′
t (e) where e ∈ Θt.

Observation a2× means that the second occurrence of a failed (and possibly the

first one also) whereas the observation a2×e means that only the second occurrence of

a succeeded. For example, the set of observations resulting from test a2.t is: Θa2.t =

{a2X

e, a2× , a2×e | e ∈ Ot}.

TKmoment differs from TKmoment0 by allowing tests to continue after an action of the

form ak if the last occurrence of a (the execution of a on the kth copy) succeeds. This

last occurrence decides about the transition and is called a transition action. The

following theorem shows that both define the same equivalence. However, TKmoment

is more efficient in the sense that a difference between the processes can be detected

before the last step of the test. This implies that the convergence of the values when

computing the corresponding divergence will happen faster but also that the returned

value will be different. To understand intuitively the difference, consider two processes

that differ by tiny values at every step of a long trace. The fact that TKmoment has the

ability to detect the difference at every step yields that the small values will be added

up and hence return a bigger value than tests of TKmoment0 that will only use the last

action to compute the divergence.

The following theorem states that both test grammars TKmoment0 and TKmoment char-

acterize K-moment equivalence.

Theorem 5.11. Let K ∈ N
∗. Two LMPs yield the same probability distribution on

observations of tests generated from TKmoment0 if, and only if, they yield the same prob-

ability distributions on observations of tests generated from TKmoment.

Proof. (⇒). By contradiction. Let L1 = (S1, i1,A, P ) and L2 = (S2, i2,A, P
′) be

two LMPs. Let t be a test of TKmoment (t = ak11 .a
k2
2 . . . . .a

kn
n ) which yields different

probability distributions on observations for L1 and L2, with n as small as possible.

The proof consists in showing that there exists a test t of TKmoment0 that yields different

probability distributions over observations. Let PrL1(t) be the probability that t is

accepted in L1. That is,

PrL1(t) = QL1
t (a

kX
1

1 a
kX
2

2 . . . ak
X
n
n ).
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W.l.o.g., we may suppose that

PrL1(a
kX
1

1 a
kX
2

2 . . . ak
X
n
n ) 6= PrL2(a

kX
1

1 a
kX
2

2 . . . ak
X
n
n ).

Thus,

PrL1(a
kX
1

1 )PrL1(a
kX
2

2 |a
kX
1

1 ) . . . P rL1(a
kX

n
n |a

kX
1

1 a
kX
2

2 . . . a
kX

n−1

n−1 )

6= PrL2(a
kX
1

1 )PrL2(a
kX
2

2 |a
kX
1

1 ) . . . P rL2(a
kX

n
n |a

kX
1

1 a
kX
2

2 . . . a
kX

n−1

n−1 ).

By the minimality of n, we therefore have

PrL1(a
kX

n
n |a

kX
1

1 a
kX
2

2 . . . a
kX

n−1

n−1 ) 6= PrL2(a
kX

n
n |a

kX
1

1 a
kX
2

2 . . . a
kX

n−1

n−1 ).

Which, by the definition of a
kX

i

i , implies

PrL1(a
kX

n
n |aX

1 a
X
2 . . . aX

n−1) 6= PrL2(a
kX

n
n |aX

1 a
X
2 . . . aX

n−1)

⇒
PrL1(aX

1 a
X
2 . . . aX

n−1a
kX

n
n )

PrL1(aX
1 a

X
2 . . . aX

n−1)
6=
PrL2(aX

1 a
X
2 . . . aX

n−1a
kX

n
n )

PrL2(aX
1 a

X
2 . . . aX

n−1)

⇒ PrL1(aX

1 a
X

2 . . . aX

n−1a
kX

n
n ) 6= PrL2(aX

1 a
X

2 . . . aX

n−1a
kX

n
n )

⇒ QL1
t (aX

1 a
X

2 . . . aX

n−1a
kX

n
n ) 6= QL2

t (aX

1 a
X

2 . . . aX

n−1a
kX

n
n ).

Since a1.a2 . . . an−1.a
kn
n is a test of TKmoment0 , we have the result.

(⇐). Follows from the fact that all the tests generated from TKmoment0 are also tests

generated from TKmoment.

5.6 The Value of K at the Limit

Within the family of K-moment equivalences, the bigger is the value of K, the more

discriminating is the corresponding equivalence notion. The example of Figure 5.1 shows

how 2-moment is more discriminating than 1-moment. The example of Figure 5.2 shows

how 3-moment is more discriminating than 2-moment. Indeed, the two processes are

1-moment (trace) equivalent, 2-moment equivalent but not 3-moment equivalent – the

test aa3 distinguishes between them.

What happens if we let K tends to the limit? By observing the test grammar

of TKmoment, we can conclude that, even if it remains RRF, it will permit unbounded

numbers of replicas at a particular state. This is not practical for testing, but for

theoretical purpose, it is interesting to observe that the limit equivalence has a natural
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P1

a[ 1
2
] a[ 1

6
]

• 1

a[ 1
10

]

• 2

a[ 4−
√

5
10

]

• 3 • 4

P2

a[ 1
4
] a[ 5

12
]

• 1

a[ 3−
√

5
10

]

• 2

a[
√

5+1
10

√
5
]

• 3 • 4

Figure 5.2: 2-moment equivalent but not 3-moment equivalent

form and that it is strictly weaker than bisimulation. In order to define this limit

equivalence, we take advantage of a well known alternative definition of bisimulation.

Bisimulation can be formulated as the greatest fixed point of a particular function

F which is defined as follows. Given an equivalence relation R, we say that two states

s1, s2 are F (R) equivalent if they have the same probability to jump to an equivalence

class of R for every sequence of actions. More formally

Ps1→C(τ) = Ps2→C(τ)

for all R-equivalence class C and all trace τ . Bisimulation is ∩i∈NF
i(S × S) and trace

equivalence is simply F (S×S). Hence, in order to naturally define an equivalence whose

discrimination power is between bisimulation and trace equivalence, one could try to

adjust the parameters that distinguish these two equivalences. The limit equivalence

we are looking for can be defined that way.

Consider ∩a∈AF (∼a) where ∼a is the equivalence that identifies states that have

the same total probability to perform action a, Ps→S(a). This equivalence discriminates

between T1 and T2 of Figure 5.1 and any two trace equivalent processes where proba-

bilistic choices happen at different levels. To prove that this equivalence corresponds to

K-equivalence for every K, we will use the fact that moments coincidence corresponds

to equality between the associated random variables.

Theorem 5.12. Two LMPs L1 and L2 with the same action set A are ∩a∈AF (∼a)-

equivalent if, and only if, for any trace τ ∈ A∗ and action a ∈ A, the random variables

XL1

τ,a and XL2

τ,a are identically distributed.

Proof. Fix L1 = (S1, i1,A, P1), L2 = (S2, i2,A, P2), and let Cp,a
i = {s : Ps→Si

(a) = p},

i = 1, 2. It follows from Definition 5.5 and Remark 5.6 that all the random variables

XL1

τ,a and XL2

τ,a are identically distributed if and only if

Pi1→Cp,a
1

(τ) = Pi2→Cp,a
2

(τ) ∀ a∈A,∀τ ∈A∗,∀p∈ [0, 1].
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Now, by definition of ∼a, we have

s1 ∼a s2 ⇔ Ps1→S1(a) = Ps2→S2(a).

Thus, by the definition of the function F , we have

i1 F (∼a) i2 ⇔ Pi1→Cp,a
1

(τ) = Pi2→Cp,a
2

(τ) ∀τ ∈A∗,∀p∈ [0, 1].

We therefore have,

i1 ∩a∈A F (∼a) i2 ⇔ Pi1→Cp,a
1

(τ) = Pi2→Cp,a
1

(τ) ∀ a∈A,∀τ ∈A∗,∀p∈ [0, 1]

⇔ Pr(XL1

τ,a = p) = Pr(XL2

τ,a = p) ∀τ ∈A∗,∀p∈ [0, 1].

We thus have a correspondence between K-moment equivalence and ∩a∈AF (∼a), as

stated in the following corollary.

Corollary 5.13. Two LMPs are ∩a∈AF (∼a) equivalent if, and only if, they are K-

moment equivalent for every K.

Proof. Since all the moments of the random variable XL1

τ,a are always between 0 and

1, and since we restrict to countable LMPs, the uniqueness of the Hausdorff moment

problem (see [1]) implies that the random variables XL1

τ,a and XL2

τ,a are identically distrib-

uted if and only if all their moments coincide. Definition 5.5 and Theorem 5.12 imply

the result.

5.7 A Logical Characterization

Recall that a logical characterization of an equivalence notion requires the definition

of a modal logic such that two processes are equivalent if, and only if, they satisfy the

same formulae of the logic. The equivalence ∩a∈AF (∼a) can be characterized by the

following modal logic.

Definition 5.14.

Lk−limit : F := 〈τ〉p φ tt

φ := 〈a〉q

where τ ∈ A∗, a ∈ A, and p, q ∈ [0, 1]. A formula 〈τ〉p φ tt is satisfied by any state that

accepts trace τ with probability at least p then end up in a state satisfying φ whereas

〈a〉q is satisfied by any state that accepts action a with a probability equal to q.
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In the example of Figure 5.1, process T1 satisfies the formula 〈ca〉1 〈b〉 1
3
tt whereas

T2 does not.

Theorem 5.15. Two states s1 and s2 are ∩a∈AF (∼a)-equivalent if, and only if, they

satisfy exactly the same formulae of the logic Lk−limit.

Proof. (⇒). By contradiction. Suppose that s1 and s2 do not satisfy the same set of

formulae of Lk−limit. Let f = 〈τ〉p 〈a〉q tt a formula of Lk−limit and assume, w.l.o.g.,

that it is satisfied by s1 but not by s2 (s1 � 〈τ〉p 〈a〉q tt and s2 2 〈τ〉p 〈a〉q tt). By

Definition 5.14 this implies:

Ps1→{s:Ps→S(a)=q}(τ) ≥ p > Ps2→{s:Ps→S(a)=q}(τ).

By Definition 5.5, we have

Pr(Xs1

τ,a = q) ≥ p > Pr(Xs2

τ,a = q)

which implies that Xs1

τ,a and Xs2

τ,a are not identically distributed. Theorem 5.12 implies

that s1 and s2 are not ∩a∈AF (∼a)-equivalent.

(⇐). By contradiction. Suppose that s1 and s2 are not ∩a∈AF (∼a)-equivalent. Theo-

rem 5.12 implies that ∃τ ∈ A∗,∃a ∈ A, such that Xs1

τ,a X
s2

τ,a are not identically distrib-

uted. By Definition 5.5, we may assume, w.l.o.g., that ∃q, p ∈ [0, 1], such that

Pr(Xs1

τ,a = q) = p > Pr(Xs2

τ,a = q).

Then, it is easy to verify that the formula f = 〈τ〉p 〈a〉q tt of Lk−limit is satisfied by s1

but not by s2.

5.8 Conclusion

K-moment is a new family of equivalence notions that constitutes a good compromise

between trace equivalence and bisimulation. In this chapter, we presented this family

from different point of views, namely, testing, coincidence of moments, function F , and

logical. In particular, we showed that K-moment can be characterized by a simple

testing framework which is RRF (recursive replication free). We showed also that the

observations set one can obtain as a result of the execution of a test t can be grouped

in a certain pattern to obtain new observation functions. In the next chapter, we will

take advantage of this grouping capability to propose a new and flexible framework for

defining testable equivalences.



Chapter 6

Test-Observation-Equivalence

(TOE)

6.1 Introduction

Testing is an efficient tool to characterize equivalence between stochastic processes, in

particular when the models of the processes are not available. Typically, when equiva-

lence notions are defined via testing, the main element to specify is the test grammar.

However, as seen in the previous chapter, there is another element that can play an

important role, that is: how observations are grouped. Indeed, generally, only some

aspects of observations are significant. Grouping of “similar” observations will allow to

focus on important aspects of observations. In this chapter, we propose an improved

technique to define equivalence notions by putting more emphasis on the observation

function which indicates how observations are grouped. Hence, this technique is based

on specifying two elements: a test grammar and an observation function just as we

have done for the particular case of K-moment in the previous chapter. The resulting

equivalence notion is called, therefore, test-observation-equivalence, or shortly, TOE.

This chapter starts by describing the two elements of a TOE. Then, to fix ideas, we

give a detailed example of a TOE called Barb Acceptance. In the second part of this

chapter, we show how the RL framework presented in Chapter 4 can be generalized in

such a way to match any TOE and we provide the necessary formal proof in a generic

form. Finally, we use the proposed framework to give a TOE definition of the equiv-

alence notions presented in the previous chapters and we discuss their distinguishing

capabilities by organizing them in a hierarchy.
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6.2 Test Grammar

A test grammar specifies the form of tests that can be generated. Then, executing

tests on a process allows to figure out which properties are satisfied on the process. In

particular, in presence of a system allowing to create replicas of any of its states, an

interesting test grammar would take advantage of this capability. Having this feature in

mind, we propose a generic test grammar for any TOE as follows. Let L = (S, i,A, P )

be an LMP, then:

TGen : t ::= ω | α.t

where ω is a dummy action which does anything and α , called a meta-action, has the

form α = Aa such that A is a tuple of actions of the form 〈a1, a2, . . .an〉 and a ∈ A.

The idea behind the meta-action α is that, having several replicas of the current state,

perform a set of experiments via the A-part of α and then execute the action a to

transit to the next state. Therefore, the a-part of α is the transition action and is noted

trans(α).

Example 6.1. Consider the test grammar:

t ::= ω | {a1, . . . , an}a.t

where the meta-action α has the form {a1, . . . , an}a. The curly brackets in the meta-

action {a1, . . . , an}a designate as usual a set of actions. That is, {a1, . . . , an} does not

include the same action twice and the order of the actions is not significant. The meta-

action {a1, . . . , an}a consists in executing actions a1, . . . , an on n replicas of the current

process, then executing the transition action a on another replica. If the transition

action succeeds, move on to the next state and proceed with t.

The properties that the generated tests can check depend on the form of the meta-

action α. For instance, in the previous example, the meta-action α = {a1, . . . , an}a

checks if the same state accepts actions a1, . . . , an and a. On the other hand, a meta-

action α = ak checks if a state accepts action a in k successive executions.

Note finally that each form of α corresponds to a different TOE and that all TOEs

are RRF.

6.3 Grouping of Observations

Executing a test on a state may yield to different possible observations. From the

observer point of view, it is not the observation itself which is relevant but a certain
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aspect of it. For example, in the observation function of ak in Definition 5.2, it is not

the exact observation obtained which is significant for the observer, but whether all k

executions of a succeed or not. Such aspect is generally shared by several observations.

The idea is then to group observations according to these aspects. This will allow first

to focus on the desired properties and second to evaluate tests more efficiently since the

number of observations can be considerably optimized.

Let a be an action in A and s a state in S. Running action a on state s produces one

of two observations: X or × (noted also aX and a×). Hence Oa = {X,×}. As defined

above, the meta-action α can be composed of different actions or instances of the same

action and hence, it may produce more observations. For example, {a1, . . . , an}a in

Example 6.1 may produce between 2 and 2n+1 observations. The number of observations

depends on whether observations are grouped or not. On one hand, not grouping

observations will produce the following observation set for action {a1, . . . , an}a:

O{a1,. . . ,an}a = Oa1 × . . .×Oan
×Oa

= {aX

1 , a
×
1 } × . . .× {aX

n , a
×
n } × {aX, a×}

= {X,×}n+1. (6.1)

On the other hand, by extensively grouping observations we may end-up with the

following observation set:

Θ{a1,. . . ,an}a =
{
{a1, . . . , an}a

X, {a1, . . . , an}a
×}

= {X,×} (6.2)

where the observation {a1, . . . , an}a
X means that all actions succeeded and the observa-

tion {a1, . . . , an}a
× means that at least one of the actions a1, . . . , an, a has failed.

The observation functions O and Θ are both extreme cases. Indeed, the observa-

tion function O yields to maximal observation sets (|O{a1,. . . ,an}a| = 2n+1), whereas the

observation function Θ yields to minimal observation sets (|Θ{a1,. . . ,an}a| = 2). However,

between these two extreme cases, there are other observation functions that can be

defined. For example, it is possible to group observations according to the number of

succeeded actions among a1, . . . , an, a: observations with 0 successes, observations with

1 success, etc. This will yield to n+ 2 possible observations.

Notice that the observation set Θ{a1,. . . ,an}a (Equation (6.2)) is a partition of the ob-

servation set O{a1,. . . ,an}a (Equation (6.1)) where there are only two parts. One part, de-

noted {a1, . . . , an}a
X or X, contains only one element of Oα which is (aX

1 , a
X
2 , . . . , a

X
n , a

X).

The second part, denoted {a1, . . . , an}a
× or ×, contains the remaining elements of Oα.
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Generalizing this discussion to TGen, we define O as the observation function without

grouping.

Definition 6.2. Let α = Aa, then

• Oω = {ωX}

• Oα.t = OA × {a×} ∪OA × {aX} ×Ot

where OA = {X,×}|A|.

Other observation functions can be defined by partitioning the sets of observations

defined by O. The way of partitioning must satisfy two properties. The first is that

the observations set of a given meta-action α should always be grouped according the

same pattern but two different meta-actions α1 and α2 can correspond to two different

possible groupings. The second is that the grouping of a long test t = α1.α2 . . . αn must

respect the grouping of each of its meta-actions α1, α2, . . . , αn. This is what is captured

by the following definition of generic observation function.

Definition 6.3. Assume that ψα is a partition of Oα for every meta-action α. Then

the observation function ψ which assigns a set of observations to every test of TGen is

defined as follows.

• ψω = {ωX}

• ψα.t = ψ×
α ∪ (ψX

α × ψt) if t 6= ω

where ψ×
α ∪ψX

α is a refinement of ψα such that observations whose transition action has

failed (in ψ×
α ) are separated from observations whose transition action has not failed (in

ψX
α ).

The refinement of ψα into ψ×
α and ψX

α is just to reflect the following fact. It may

happen that two observations be grouped even if different events happened on the

transition action. It is the case for our TKmoment observation function Θ. Indeed,

consider test a2.t: the two observations (aX, a×) and (a×, aX) are grouped together if

t = ω (it is considered a failure) but otherwise, the case where the transition action

succeeds is separated from the case where it does not. This is hidden in the notation

a2× and a2×e of Θa2.t = {a2X

e, a2× , a2×e | e ∈ Ot}.
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This definition guarantees that the observation function ψα is consistent for every

meta-action, but it allows to not treat different meta-actions α1 and α2 (ψα1 and ψα2 can

be different groupings). Let us see a quick example of a less structured one in the sense

that meta-actions with the same length will be grouped the same way. Consider the

following observation function, λ, which groups observations according to the number

of successful actions.

|α| = 1 ⇒ λα =
{

{X}
︸︷︷︸

1 success

, {×}
︸︷︷︸

0 success

}

|α| = 2 ⇒ λα =
{
{(X,X)}
︸ ︷︷ ︸
2 successes

, {(X,×), (×,X)}
︸ ︷︷ ︸

1 success

, {(×,×)}
︸ ︷︷ ︸

0 success

}

|α| = 3 ⇒ λα =
{
{(X,X,X)}
︸ ︷︷ ︸

3 successes

, {(X,X,×), (X,×,X), (×,X,X)}
︸ ︷︷ ︸

2 successes

,

{(X,×,×), (×,X,×), (×,×,X)}
︸ ︷︷ ︸

1 success

, {(×,×,×)}
︸ ︷︷ ︸

0 success

}

...

Another observation function could group the observations of meta-actions of even

length according to their number of successful actions, and, for odd length meta-actions,

group observations in two parts as in Equation (6.2). One could even think also of ob-

servations functions that do not treat similarly actions of the same length. An example

would be to observe the failure or success of an action a in a meta-action α only if an

action b is present and successful in α.

Combining a test grammar T and a suitable observation function ψ produces a

TOE. By suitably tuning these two elements, it is possible to define a large range of

equivalence notions. Among these, one can find trace and K-moment equivalences. To

further fix ideas, let us detail the definition of another TOE.

6.4 A TOE Example: Barb Acceptance Equivalence

In this section, we revisit Example 6.1 and we give a complete definition of the corre-

sponding TOE. The TOE is called Barb acceptance and is a testable variant of Barb

acceptance equivalence [35] defined in Section 2.3.5. Recall that two processes are Barb

acceptance equivalent if, and only if, they accept all Barb traces with the same prob-

ability. A Barb trace has the form A0a0A1a1A2a2. . .Anan where Ai is a set of actions.
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Process L accepts this Barb trace with probability p if L initially has acceptance set A0

and it has probability p to perform the trace a0a1. . .an−1 by going through states that

have, respectively, acceptance sets A1, A2, . . . , An.

Definition 6.4. The Barb acceptance TOE is a couple (TbarbAcc, ψ) such that:

TbarbAcc t ::= ω | {a1, . . . , an}a.t

and the observation function ψ is defined by partitioning the observations set O{a1,. . . ,an}a
as follows:

• ψ{a1,. . . ,an}a =
{
{a1, . . . , an}a

×, {a1, . . . , an}a
X
}

• ψ{a1,. . . ,an}a.t =
{
{a1, . . . , an}a

×}

∪
{
{a1, . . . , an}a

× e | e ∈ ψt
}

∪
{
{a1, . . . , an}a

X e | e ∈ ψt
}

if t 6= ω

where the observation {a1, . . . , an}a
× means that at least one of the actions a1, . . . , an, a

has failed and the observation {a1, . . . , an}a
X means that all actions succeeded.

Since a TOE is by definition RRF, the MDP framework to estimate the trace equiv-

alence divergence between LMPs (Section 4.3) can be extended to any TOE. This is

the topic of the next section.

6.5 A Generic Framework

In Chapter 4, we introduced a new approach to estimate the divergence between sto-

chastic systems without the need to know their internal structures. The approach was

illustrated for the case of trace equivalence. In this section, we show that the approach

can be generalized to any TOE (T , ψ). To this end, we reformulate the stochastic

game, the MDP model as well as the theorems in terms of the generic meta-action α

and the generic observation function ψ. Then, we give the formal proof of this generic

framework.

6.5.1 The Stochastic Game

The stochastic game introduced in Section 4.2 is generalized as follows. Let (T , ψ) be

a TOE.
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GameGen: Put the three systems (“Impl”, “Spec”, and “Clone”) in their initial states;

then

Step 1 : The player chooses an action α and makes a prediction Pred on the outcome

it may produce on “Spec”.

Step 2 : Action α is run on the three processes.

Step 3 : If trans(α) succeeds on the three processes; go to Step 1. Else the game

ends. In both cases the reward is computed as follows : (writing I for “Impl”, C

for “Clone” and Obs for observation)

R :=
(
Obs.Spec) = Pred

)(
(Obs.I 6= Pred ) − (Pred 6= Obs.C)

)

where 0 and 1 are used as both truth values and numbers and Pred , Obs.Spec, Obs.I,

and Obs.C are elements of ψα. This reward will be revealed to the player at the

end of the episode.

Step 4 : Repeat until the episode ends on one of the three processes.

6.5.2 MDP Construction

The generic version of the MDP is very similar to the MDP of Definition 4.3. The

state of states is still a set of traces where the trace is a sequence of meta-actions

α1, α2, . . . , αn. An action of the MDP is a meta-action α coupled with a prediction

Pred on its outcome on “Spec” denoted αPred . The next-state probability distribution

is the same as Definition 4.3 while the reward function is slightly modified.

Definition 6.5. Let (T , ψ) be a TOE. Given the LMPs “Impl”, “Spec” and “Clone”

sharing the same action set A, the induced MDP M is a tuple (S, i, Act, PrM , R). The

set of states of the MDP M is:

S := {τ : α1α2. . .αn | P
Spec(τ) > 0} ∪ {Dead} (6.3)

where αi = Aiai, Ai is a tuple of actions of A and ai ∈ A. The initial state is i = ε

(the empty sequence).

The set of actions of M is:

Act := {αPred | α = Aa ∈ tuple(A) ×A ∧ Pred ∈ ψα}. (6.4)
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Suppose that s = τ and trans(α) = a, then the next-state probability distribution

PrM and the total immediate reward R functions are defined as follows:

PrMs→s′(α
Pred) :=







P Spec(aX|s) P I(aX|s) PC(aX|s) if s′ = τ α

1−P Spec(aX|s) P I(aX|s) PC(aX|s) if s′=Dead

0 otherwise.

RαPred

s := P Spec(αPred|s)∆αPred

s (6.5)

where • ∆αPred

s := PC(αPred|τ) − P I(αPred|τ).

The definition of RαPred

s is obtained from GameGen in the same spirit as Equa-

tion (4.7) in Definition 4.3 except that aX and a× are replaced, in this generic case, by

αPred ,∀Pred ∈ ψα. Indeed, according to the reward formula in step 3 of GameGen, the

reward is computed only if the observation in “Spec” (Obs.Spec) matches the prediction

(Pred ). Hence we get a (+1) reward when the observation in “Impl” is different from

Pred (Obs.I 6= Pred or equivalently Obs.I = Pred ) and the observation in “Clone” is

the same as Pred (Obs.C = Pred ). On the other hand, we get a (-1) reward when

Obs.I = Pred and Obs.C 6= Pred . Thus,

RαPred

s = P I(αPred |s) P Spec(αPred |s) PC(αPred |s) − P I(αPred |s) P Spec(αPred |s) PC(αPred |s)

= P Spec(αPred |s)(P I(αPred |s)PC(αPred |s)−P I(αPred |s)PC(αPred |s))

= P Spec(αPred |s) ∆αPred

s .

6.5.3 Main Theorem and Definition of div( . ‖ . )

As for trace equivalence, for any TOE, the divergence between LMPs corresponds to

the optimal value of the induced MDP.

Definition 6.6. Let “Impl” and “Spec” be two LMPs, E a TOE, and M their induced

MDP. We define their E equivalence divergence as

div(“Impl”‖“Spec”) := V ?(i).

This definition is based on the following theorem.
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Theorem 6.7. Let M be the MDP induced by “Impl”, “Spec”, and “Clone”. Let E =

(T , ψ) be a TOE. If γ < 1 or |M| < ∞ then V ?(i) ≥ 0, and V ?(i) = 0, if and only if,

“Impl” and “Spec” are equivalent according to E.

The proof of Theorem 6.7 is given in the next section.

6.5.4 Value of a Policy in M

In order to define a formula for policy evaluations on any state s in our setting, we start

from the Bellman Equation [51].

V π(s) =
∑

αPred∈Act
π(s, αPred )

∑

s′∈S
PrMs→s′(α

Pred ) (RαPred

s + γ V π(s′))

=
∑

αPred∈Act
π(s, αPred )(RαPred

s + PrMs→s.α(α
Pred ) γV π(s.α)). (6.6)

Recall that a test-policy a deterministic policy that has the form π = αPred1
1 αPred2

2 . . . αPredn
n .

The value of π on i is thus determined as follows from Equation (6.6):

V π(i) =
∑

αPred∈Act
π(i, αPred ) (RαPred

i
+ PrM

i→i.α(α
Pred ) γ V π(i.α))

= Rα
Pred1
1

ε + PrMε→α1
(α1) γ

(

Rα
Pred2
2

α1
+ PrMα1→α1α2

(α2) γ V
π(α1α2)

)

= Rα
Pred1
1

ε + PrM (α1) γ R
α
Pred2
2

α1
+ PrM (α1α2) γ

2 Rα
Pred2
2

α1α2
+ . . .

=
n−1∑

i=0

PrM (α0. . .αi) γ
i R

α
Pred i+1
i+1

α0. . .αi (6.7)

where PrM (τ) is the probability that trace τ is accepted in the MDP, and α0 denotes ε.

6.5.5 Proof of Theorem 6.7

We prove in this section that solving the MDP induced by “Spec” and “Impl” yields

an equivalence divergence between them, i.e. the value is positive and it is 0, if and

only if the two processes are equivalent. Let us first define this easy lemma which will

be useful in this section.

Lemma 6.8. Let ψ be an observation function, ∀ s ∈ S\{Dead},∀α,

for ψα = {Pred1, . . . , Predk},
∑

Pred∈ψα

∆αPred

s = 0.
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Proof.

∑

Pred∈ψα

∆αPred

s = ∆αPred1

s + . . .+ ∆αPred k

s

=
(
PC(αPred1 |s) − P I(αPred1 |s)

)
+ . . .+

(
PC(αPred k |s) − P I(αPred k |s)

)

= PC(αPred1 |s) + . . .+ PC(αPred k |s) −
(
P I(αPred1 |s) + . . .+ P I(αPred k |s)

)

= 1 − 1

= 0.

In the remaining of the proof, E = (T , ψ) represents a fixed TOE.

Theorem 6.9. Let “Impl” and “Spec” be two LMPs. Then the following are equivalent:

(i) “Impl” and “Spec” are equivalent according to E.

(ii) ∀αPred ∈ Act,∀τ ∈ S\{Dead}, RαPred

τ = 0

(iii) ∀ test-policy π, V π(i) = 0

Proof. (i) ⇒ (ii). Since each state τ of S different from Dead is a trace, and since

P Spec( . | . ) = PC( . | . ),

P Spec( . | . ) = P I( . | . ) ⇔ ∀αPred ∈ Act, τ ∈ S\{Dead}

PC(αPred |τ) = P I(αPred |τ)

⇔ ∀αPred ∈ Act, τ ∈ S\{Dead}

∆αPred

τ = 0 (by definition of ∆αPred

τ )

⇒ ∀αPred ∈ Act, τ ∈ S\{Dead}

RαPred

τ = 0 (by Equation (6.5)).

(ii) ⇒ (i). Let τ ∈ S\{Dead} be a state of the MDP. Let αPred ∈ Act. By Equation (6.5),

RαPred

τ = P Spec(αPred |τ)∆αPred

τ = 0 implies that either P Spec(αPred |τ) = 0 or PC(αPred |τ) =

P I(αPred |τ). We have to prove that the latter is true, ∀ Pred ∈ ψα. Hence, we must

prove that if P Spec(αPred |τ) = 0, then P I(αPred |τ) = 0 as well. Let

ψ0
α := {Pred ∈ ψα |P

Spec(αPred |τ) = 0} and,

ψ0
α := {Pred ∈ ψα |P

Spec(αPred |τ) > 0}.
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Notice that, ψα = ψ0
α ∪ ψ0

α and that PC(αPred |τ) = P I(αPred |τ) for Pred ∈ ψ0
α. The

following equations imply that P I(αPred |τ) must be zero, ∀ Pred ∈ ψ0
α:

∑

Pred∈ψ0
α

P I(αPred |τ) =
∑

Pred∈ψα

P I(αPred |τ) −
∑

Pred∈ψ0
α

P I(αPred |τ)

=
∑

Pred∈ψα

P I(αPred |τ) −
∑

Pred∈ψ0
α

P Spec(αPred |τ)

= 1 − 1

= 0.

(ii) ⇒ (iii) follows from Equation (6.7).

(iii) ⇒ (ii). Fix αPred ∈ Act and τ ∈ S\{Dead} such that PrM (s) > 0, and let n ≥ 0

such that α1 . . . αn = τ . Now, define π = αPred1
1 . . . αPredn

n . By (iii) and Equation (6.7), we

have 0 = 0−0 = V παPred

(i)−V π(i) = PrM (τ) γn RαPred

τ . Since γ > 0, if PrM (τ) 6= 0 then

Equation (6.5) will imply the result. So, by way of contradiction suppose PrM (τ) = 0.

This implies that P I(τ) = 0 because, by definition of the MDP M, P Spec(τ) 6= 0 and

because P Spec(τ) = PC(τ). Now let α1α2. . .αk be the smallest subsequence of τ such

that P I(α1α2. . .αk) = 0. Since P I(ε) = 1, k ≥ 1. Fix τ ′ = α1α2. . .αk-1, and observe that

both τ ′ and τ ′αk are states of the MDP M because P Spec(τ ′) 6= 0 and P Spec(τ ′αk) 6=

0. By the hypothesis and Equation (6.7), we have 0 − 0 = V α
Pred1
1 α

Pred2
2 . . .α

Predk
k (i) −

V α
Pred1
1 α

Pred2
2 . . .α

Predk-1
k-1 (i) = PrM (τ ′) γn R

α
Predk
k

τ ′ . Since, by construction, PrM (τ ′) 6= 0, we

therefore have that R
α
Predk
k

τ ′ = 0. It then follows from Equation (6.5) that ∆
α
Predk
k

τ ′ = 0, and

hence that P I(αPredk
k |τ ′) = PC(αPredk

k |τ ′). On an other hand, P I(αPredk
k |τ ′) = 0, because

P I(τ ′) 6= 0 and P I(τ ′αk) = 0. Thus, PC(αPredk
k |τ ′) = 0, which in turn implies that

PC(τ ′αk) = 0, and therefore that P Spec(τ ′αk) = 0. A contradiction.

Theorem 6.10. Two LMPs are not E-equivalent if and only if V π(i) > 0 for some

test-policy π of the MDP M.

Proof. (⇒): by Theorem 6.9, we have that V π(i) 6= 0 for some test-policy π =

αPred1
1 αPred2

2 . . . αPredn
n . Define

J := {j ∈{1, . . . n} | P Spec(α
Pred j
j |α1 . . . αj-1) ∆

α
Pred j
j
α1...αj-1<0},

and note that P Spec(α
Pred j
j |α1 . . . αj-1) > 0 and ∆

α
Pred j
j
α1...αj-1< 0 for any j ∈ J . By Lemma 6.8,

we have, for any meta-action α and trace τ ,
∑

αPred∈ψα

∆αPred

τ = 0, then

∃Pred ′ such that ∆
αPred’

j
α1α2. . .αj-1 > 0.

Let π1 be the test-policy obtained from π by replacing each action α
Pred j
j where j ∈ J

by αPred’

j . Then, by Equation (6.7), V π1(i) > 0, as desired.

(⇐): follows from Theorem 6.9.
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Lemma 6.11. For every test-policy π, for every meta-action α ∈ tuple(A) ×A,

∃αPred ∈ ψα such that V π(i) ≤ V παPred

(i).

Proof. As for Theorem 6.10, the result follows from Equation (6.7) and Lemma 6.8.

Theorem 6.12. If γ < 1 or |M| <∞ then V ?(i) ≥ V π(i) for any test-policy π.

Proof. If |M| <∞, since M has a tree structure, the result is a direct consequence of

Lemma 6.11. Otherwise, it is sufficient to show that

∀ε > 0 ∀ test-policy π ∃ policy π′ such that V π′
(i) < V π(i) − ε.

Let ε > 0 and π = αPred1
1 . . . αPredn

n be a test-policy. Because of Lemma 6.11, w.l.o.g., we

may suppose n to be large enough to satisfy
∑∞

i=n+1 γ
i < ε. Since on each episode, the

reward signal is (−1), (0) or (+1), it is easy to see that any policy π ′ of M that coincides

with π on the states ε, α1, α1α2, . . . , α1α2. . .αn will have the desired property.

If “Impl” and “Spec” are equivalent, Theorem 6.9 implies that V ?(i) = 0. If, how-

ever, they are not equivalent, Theorem 6.10 implies that there exists at least a test-policy

π such that V π(i) > 0. By Theorem 6.12, we can conclude that V ?(i) > 0.

Theorem 6.7. Let M be the MDP induced by “Impl” and “Spec”. If the discount

factor γ < 1 or the size of MDP |M| < ∞ then the optimal value V ?(i) ≥ 0, and

V ?(i) = 0 if, and only if, “Impl” and “Spec” are equivalent according to E.

6.6 Hierarchy of TOEs

In the two previous sections, we presented the TOE framework and we proved that any

equivalence defined as a TOE fits in the RL framework to estimate the divergences. In

this section, we revisit all equivalence notions discussed so far in this thesis, namely,

trace, ready, Barb acceptance, K-moment, and bisimulation equivalences and we try

to view them as TOEs. Then we try to organize them in a hierarchy based on their

distinguishing capabilities. Note that not all these equivalence notions can be defined

as TOEs. Bisimulation is a clear example. For such equivalences, we simply consider

their testing characterization.
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Trace, K-moment, and testable Barb acceptance (Section 6.4) equivalences can be

defined as TOEs. The following table gives a TOE definition for each one of them1.

TOE Test grammar Observation function

Trace t ::= ω | a.t Oω = {ωX}

Oa.t = {a×} ∪ {aXe | e ∈ Ot}

K-moment t ::= ω | ak.t ψω = {ωX}

ψak.t = {ak×} ∪ {ak×e | e ∈ ψt}

∪{akX

e | e ∈ ψt}

Barb acceptance t ::= ω | {a1, . . . , an}a.t ψω = {ωX}

ψ{a1,. . . ,an}a.t = {{a1, . . . , an}a
×}

∪ {{a1, . . . , an}a
× e | e ∈ ψt}

∪ {{a1, . . . , an}a
X e | e ∈ ψt}

As mentioned in Section 2.3.3, ready equivalence is not testable. In this section, we

define a testable variant of ready that we use in the comparative study. This testable

variant, however, cannot be defined as a TOE. The following table gives the testing

characterizations of testable ready as well as bisimulation.

Equivalence Test grammar Observation function

Bisimulation t ::= ω | a.t | (t1, . . . , tn) Oω = {ωX}

Oa.t = {a×} ∪ {aXe | e ∈ Ot}

O(t1,... ,tn) = Ot1 × . . .×Otn

Ready t ::= ω | a.t | {a1, . . . , an} Oω = {ωX}

Oa.t = {a×} ∪ {aXe | e ∈ Ot}

O{a1,. . . ,an} = Oa1 × . . .×Oan

By comparing the distinguishing capabilities of these equivalence notions, we obtain

the hierarchy of Figure 6.1. The equivalence notions are organized from the weakest

(bottom) to the strongest (top). Each arrow in the figure is explained using a simple

example as follows.

• Trace equivalence is the weakest notion. For example, trace cannot distinguish

between P1 and P2 processes of Figure 6.2 while any other notion can distinguish

between them: K-moment with c1.a1.b2.ω, ready with c.a.{b, c}, Barb acceptance

with {c}c.{a}a.{b, c}b.ω, and bisimulation with c.a.(b.ω, c.ω).

1Generally, there exists several TOE definitions for the same equivalence notion.
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Figure 6.1: Hierarchy of TOEs and testable equivalence notions

• 3-moment TOE is more distinguishing than 2-moment TOE. P1 and P2 of Fig-

ure 6.3 are 1-moment (trace) equivalent, 2-moment equivalent but not 3-moment

equivalent. Indeed, QP1

a.a2(a
Xa2X

) = 1
2
( 1

10
)2 + 1

6
(4−

√
5

10
)2 = 3−

√
5

75
= QP2

a.a2(a
Xa2X

)

while QP1

a.a3(a
Xa3X

) 6= QP2

a.a3(a
Xa3X

).

• Barb acceptance TOE is more distinguishing than testable ready. P1 and P2 of

Figure 6.4 are trace equivalent, ready equivalent but not Barb acceptance equiva-

lent. Indeed, test t = {a}a.{b, d}b.{c, d}c yields different observation probabilities

in P1 and P2: QP1
t ({a}aX.{b, d}bX.{c, d}cX) = (1 1

2
)(1 1

2
1)(1

3
1 1

3
) = 1

36
whereas

QP1
t ({a}aX.{b, d}bX.{c, d}cX) = (1 1

2
)(1 1

2
1)(1 1 1) = 1

4
.

• K-moment TOEs are not comparable with testable ready equivalence and Barb

acceptance TOE. T1 and T2 processes of Figure 6.5 are ready and Barb acceptance

equivalent but not K-moment : the test a.b2 distinguishes between them. On the

other hand, Q1 and Q2 processes of the same figure are 2-moment equivalent but

not ready nor Barb acceptance equivalent: the tests a.{b, c} and {a}a.{b, c}b can

distinguish between them.

• Bisimulation is the strongest. Processes P1 and P2 of Figure 6.6 can be distin-
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Figure 6.2: Only trace equivalence cannot distinguish between these processes.
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]
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a[
√

5+1
10

√
5
]
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Figure 6.3: 2-moment equivalent but not 3-moment equivalent

guished only by bisimulation with test a.(b.c.ω, b.d.ω).

6.7 Conclusion

TOE is a new framework to define equivalence notions based on testing. It refines

simple testing characterization by adding more flexibility in the definition of observation

functions. The idea is to group together “similar” observations which allow in one hand

to focus on important aspects of observations and on the other hand to evaluate tests

more efficiently since the number of observations will be considerably reduced. Since

any equivalence notion defined as a TOE is recursive replication free (RRF), we showed

that the RL framework of Chapter 4 to estimate divergences can be tailored to any

such equivalences. Hence, this chapter is a generalization of Chapter 4 to different

equivalence notions. The internal structure of the stochastic processes, however, is still

assumed to be LMP. In the next chapter, we see how the approach can be generalized

to other stochastic models that are mainly used in artificial intelligence.
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Figure 6.4: Ready equivalent but not Barb acceptance equivalent processes.
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Figure 6.5: K-moment and Barb acceptance TOEs are not comparable
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Figure 6.6: Only bisimulation can distinguish between P1 and P2.



Chapter 7

Divergence between Dynamical

Systems

7.1 Introduction

All the results presented so far in this thesis hold for stochastic processes whose internal

structure is an LMP. However, these results can be very useful in other applications

and in different scientific fields. In particular, in artificial intelligence, there are several

problems that define a stochastic behavior. These are called, in an artificial intelligence

vocabulary, dynamical systems. An MDP is an example of a stochastic process that

can be used to model a dynamical system. In this chapter, we discuss how the ideas

presented so far in this thesis can be extended to such systems. We start by describing

dynamical systems and models. Then we show how our proposed approach can be

adjusted to a particular stochastic model, namely, partially observable Markov decision

process (POMDP).

7.2 Dynamical Systems

Dynamical systems refer to the class of problems where the state of the environment

changes over time1. If the system at time step t is in a particular state, at time step t+1,

it can be in a new state. Often, the dynamics of these kinds of systems are subject to

uncertainty. For example, it is not usually possible to predict deterministically the next

1By contrast to static systems where the state of the environment does not change.
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state of the system. Modelling dynamical systems and then reasoning about them is the

focus of several scientific communities, in particular, artificial intelligence, operations

research, control theory, etc. Typically, in studying dynamical systems one is interested

in one of two objectives: learning and controlling. Learning a dynamical system consists

in estimating, more or less precisely, the parameters of the model. This will allow to

understand the inner-working of the environment and unveil the patterns behind it. A

good example is how human genes patterns (represented as Hidden Markov Models)

can be learned from raw DNA sequences. Controlling dynamical systems, on the other

hand, consists in finding an optimal strategy (or policy) of behaving given a goal task.

This objective has been extensively discussed for the particular context of MDPs in

Chapter 3.

In the last three decades, several models have been used to model dynamical systems.

The problem to determine which model is more appropriate depends principally on the

characteristics of the dynamical system. Of primary importance is the capability to

identify the current state. That is, the observability of the system. For example, a

player in a checkers game can see exactly his current state. However, a player in a

Poker game does not since he has no way to know his opponent’s cards. A second

important element in the selection of the appropriate model is the prior knowledge of

the states set, that is, the capability to enumerate the set of states of the system. For

example, the set of states of a moving robot can be the set of possible locations in, let’s

say, a room. However, if one considers a medical diagnostic system, the set of states

is not very clear since a state must capture complex information about the patient’s

disease and treatment history. The other aspect which may play an important role in

the selection of the model is the controllability of the dynamical system. A controllable

system assumes the existence, in some form or another, of an agent which controls the

behavior of the system, typically by selecting the actions to take at each state. The

moving robot is an example of a controllable dynamical system. On the other hand, an

uncontrollable system evolves according to its internal dynamics without any external

intervention. For example, a human gene can be viewed as DNA sequence generated

from an uncontrollable system. Typically, with a controllable dynamical system one

is interested in controlling whereas with uncontrollable systems one is interested in

learning the model.

In the following, we classify the most used stochastic systems and models accord-

ing to these criteria. We present models for observable systems, models for partially

observable systems, and finally models that do not suppose the prior knowledge of the

set of states, namely, history based and prediction based models.
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Figure 7.1: A simple Candy Land board game

7.3 Models for Observable Dynamical Systems

In an observable dynamical system, at each time step, there is a way to determine

exactly the state in which the system is. In this section, we present two popular

mathematical frameworks that can be used to model such systems, namely, Markov

chain and Markov decision process.

7.3.1 Markov Chain

A Markov chain is a discrete-time stochastic process with the Markov property2. It can

be used to model dynamical systems that are observable, uncontrollable, and whose set

of states is known. The classical definition of Markov chain is a sequence of random

variables X1, X2, . . . sharing the same alphabet S representing the set of states of the

dynamical system. Pr(X3 = s2 |X2 = s4) designates the probability to be in state s2

at time step t = 3 such that the system was in state s4 at time step t = 2. In this

thesis, we prefer viewing the Markov chain as an automaton with a set of states and

transitions between these states.

Definition 7.1. A Markov chain is a tuple (S, T ) where

• S is a set of states,

2The Markov property is described in Section 3.2.2.
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• T : S → Π(S) is a transition function which maps each state S to a probability

distribution over S.

An example of a dynamical system that can be modelled by a Markov chain is a

simple candy land board game with one player (Figure 7.1). The player starts from

the start grid square and moves by rolling a single die. Hence, at each state, it has

probability 1
6

to move to one of the 6 next states. This is a very simple version of the

game, but any version of Candy Land can be represented exactly as a Markov chain

since from any square (state), the probability to move to any other square is fixed and

is independent of any previous game history.

7.3.2 Markov Decision Process

An MDP can be viewed as a controllable Markov chain where each executed action yields

a reward. Hence, any dynamical system which is completely observable, controllable,

and whose states set is known can be modelled by an MDP. The automata definition of

MDP as well as the main algorithms to solve MDPs have been detailed in Chapter 3.

7.4 Models for Partially Observable Dynamical Sys-

tems

Markov chains and MDPs can only be used to model dynamical systems where states

are completely observable. However, several dynamical systems of interest do not sat-

isfy this property. Indeed, the system can be in some state, but the agent has no way

to figure out exactly that state. Generally, in such systems, there exist some observable

events, called observations, which give hints about the actual state of the system at

each step. Therefore they are called partially observable. By way of example, consider

a robot which relies on its sensing hardware (camera, audio recorder, etc) to identify

its current state. The sensing hardware, generally, are not completely reliable. Indeed,

sometimes it cannot see a transparent glass door, sometimes a corridor looks like a cor-

ner, etc. Hence, the information acquired via the sensing hardware should be treated

as observable events and not mapped deterministically to states because the same ob-

servation can be observed in different states. In this section, we describe two widely

used models for such dynamical systems, namely, hidden Markov model (HMM) and

partially observable Markov decision process (POMDP).
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7.4.1 Hidden Markov Model

A HMM [41] is a Markov chain where states are not completely observable. That is, the

underlying mechanics correspond to a Markov chain but the state of the system at a

given moment is not exactly known. Instead, at each time step, a stochastic observation

is generated based on the current state.

Definition 7.2. A hidden Markov model is a tuple (S, T,O, ϕ) where

• S is a set of states,

• T : S → Π(S) is a state transition function which maps each state S to a proba-

bility distribution over S,

• O is a set of observations,

• ϕ : S → Π(O) is an observation function. ϕ(s, o) represents the probability to

observe o from state s.

The HMM can be viewed as a doubly embedded stochastic process with an underly-

ing stochastic process (the Markov chain internal mechanics) which is hidden and can

only be observed through another set of stochastic processes that generate the sequence

of observations. In real applications, the parameters of a HMM, namely, T and ϕ func-

tions, are generally not known. Typically, the first step is to estimate the parameters

of the HMM given a representative set of observation sequences, called the training set.

Then, the estimated model can be used to analyze other sequences, in particular for

pattern recognition. This suggests three problems that are associated with HMMs:

1. Given a set of observations sequences, figure out the HMM parameters that match

the most these sequences.

2. Given a HMM, what is the probability to accept a particular observation se-

quence?

3. Given a HMM and an observation sequence, what is the most likely state sequence

that could have generated the observation sequence?

HMMs have been particularly successful in speech recognition [41] and in DNA

sequence analysis [14]. The two use cases are detailed in Appendix B.
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7.4.2 Partially Observable Markov Decision Process

HMMs are not controllable and hence observations are generated at time steps without

explicit interaction with the environment. From this point of view, partially observable

Markov decision processes (POMDPs) [25] are more general since they are controllable3.

POMDPs are mainly used for planning and hence come with a reward function.

Definition 7.3. A POMDP is a tuple (S,A, T,O, ϕ,R) where

• S is a set of states,

• A is a set of actions,

• T : S → Π(S) is a state transition function which maps each state S to a proba-

bility distribution over S,

• O is a set of observations,

• ϕ : A×S → Π(O) is an observation function. ϕ(a, s, o) represents the probability

to observe o when action a is executed and state s is reached. We assume that

the observation depends on the action and the reached state. However, it is easy

to formulate an equivalent model in which the observation depends on the action

and the previous state.

• R : S×A→ R is the reward function which maps each state-action pair to a real

number representing the immediate reward.

Solving a POMDP, that is, finding the optimal policy, is generally a very complex

task. One interesting and very popular approach to deal with this complexity is to

maintain a vector of state occupation probabilities [50]. This vector, known as the

belief state, indicates at each time step the probability of being at any state. Then, the

POMDP planning algorithm can be reformulated into an MDP having the belief states

as state representation. Since a belief state is a vector of probabilities, it is continuous

and has as many dimensions as POMDP states and hence the problem is apparently still

complex (if not more complex). However, with belief states, Smallwood and Sondik [50]

have shown that the optimal value function can be approximated arbitrarily well by a

piecewise-linear and convex function. The piecewise linear convexity is illustrated by

the following simple example. Consider a POMDP with two states s1 and s2. Hence,

the belief state is a vector of two occupation probabilities: the probability of being in

state s1 and the probability of being in state s2. From a geometrical point of view, any

3A HMM can be seen as a POMDP with only one action.
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Figure 7.2: The optimal function of a POMDP with two states

belief state in this POMDP corresponds to a point in the segment [0, 1] representing

the probability of being at state s1, noted b(s1). The probability of being at state s2 is

simply 1− b(s1) (Figure 7.2). In this setting, any action of the POMDP induces a value

function that is linear in b. The optimal value function will intuitively correspond to

the upper surface of those functions. An interesting aspect of this function is that it is

piecewise linear and convex.

The convexity of the optimal value function can be explained intuitively as follows.

A belief state in the middle of the segment [0, 1] indicates a high level of uncertainty

about the real state in the POMDP. In such a belief state, the agent cannot make a good

choice of action and consequently it tends to get a limited long term reward. However, in

the borders of the segment, there is less uncertainty about the current real state and the

agent will select most of the time an appropriate action which guarantees more reward

on the long run. For POMDPs with 3 states, the optimal function can be represented

geometrically as a bowl shape that is composed of linear facets. For POMDPs with

more states, the pattern is the same but it is difficult to draw geometrically. Most of

the techniques to solve POMDPs are based on these ideas.

7.5 History-based Models

All models described so far assume the prior knowledge of the set of states. In several

situations, this is possible because there is a natural state representation. For example,

in physical systems, the set of states can be deduced directly from the attributes of

the physical systems. However, in some problems, choosing the set of states is not so

obvious. In such systems, the states are generally represented in terms of statistics over

observations. In the following, we describe two stochastic models which can be used for

such dynamical systems.
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History-based models represent the states in terms of past observations or histories.

They can be used to model dynamical systems which are partially observable, control-

lable, and without a prior knowledge of the set of states. The state at a given time step

t is represented by the history ht of past observations:

ht = at, ot, at−1, ot−1, . . . , at−k, ot−k

where k can be fixed or variable from state to state. If k is fixed, the model is called

nth-order Markov model [4]. One of the drawbacks of this model is the choice of k.

If k is greater than needed, the number of states will exponentially increase. If k is

smaller than needed, several different world states will be confounded that yields to

a bad representation of the dynamical system. Utile Suffix Memory (USM) [37] is a

history-based model that represents each state by a different memory length (k). The

idea is to vary the length of memory according to the relevance of the state with respect

to the task goal. Hence, a state with a high expected value will be represented by a

longer history. History-based models are easy to use in practice but they lack generality.

The main reason to this is that several world states may have the same history and the

same world state may have several histories.

7.6 Prediction-based Models (PSR)

Predictive State Representation (PSR) [34] is a new approach for representing dynami-

cal systems which hold the promise of a more compact representation. Unlike POMDPs

and MDPs, PSRs do not require a prior knowledge and enumeration of the set of states.

Instead, it uses observations it experiences during interaction to figure out the states

of the system. Hence, this representation is more “grounded” in data. On the other

hand, unlike history-based models, PSR does not represent states as histories. Instead,

it represents states as predictions of the possible outcome of tests. Hence, it uses future

observations rather than past history to distinguish states.

The future in a controllable dynamical system is represented as a test. Let A be

a set of actions and O be a set of observations. A test is an alternating sequence of

actions and observations ({AO}∗) having the form:

t = a1o1a2o2 . . . anon.

Since it designates a future the prediction of test t, noted p(t) is the probability to

observe the sequence of observations o1o2. . .on given that the actions a1a2. . .an are to be

selected. That is,

p(t) = P (o1o2. . .on | a1a2. . .an).



Chapter 7. Divergence between Dynamical Systems 118

h
0


h
1


h
2


h
i


t
1
 t
2
 t
j


p
(t
1
 | h
0
)
 p
(t
2
 | h
0
)
 p
(t
j
 | h
0
)


p
(t
1
 | h
i
)
 p
(t
2
 | h
i
)
 p
(t
j
 | h
i
)


Figure 7.3: System-dynamics matrix of a PSR

If we have the prediction of any test in {AO}∗, then we know everything we need to

know about the system.

One way to view the system is to consider a matrix whose columns are tests and

whose rows are histories (Figure 7.3). A history has the same structure as a test,

that is, an alternating sequence of actions and observations. The difference lies in the

interpretation since a history is a test that has already happened. The entry of the

matrix corresponding to history h and to test t is the prediction of test t given history

h, noted p(t |h). The columns and rows contain respectively all tests and histories

organized in a lexicographic order. The resulting matrix with its infinitely many rows

and columns is not a model of the system but the system itself since it represents

everything we need to know about the system.

Having defined the system-dynamics matrix, the PSR approach is based on identi-

fying a subset of tests that are sufficient to determine the prediction of any other test.

This subset of tests is called core tests. Let Q = q1q2 . . . qk be the set of core tests of a

given system. Given a history h, the prediction of the core tests is a 1 × k vector:

p(h) = (p(q1|h), p(q2|h), . . . , p(qk|h)).

Each prediction vector for the core test corresponds to a state in the PSR model. Hence

the state representation is the set of predictions for the core tests. The compactness

of the PSR representation is illustrated by the fact that with a minimal subset of tests

(core tests) it is possible to compute the prediction of any other test t. Indeed, for any
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history h and test t, the prediction of test t given history h is

p(t|h) = ft(p(h))

where ft : [0, 1]q → [0, 1] is a projection function. The size of the PSR representation

depends directly on the number of the core tests. More tests are in the core tests, more

accurate the PSR representation is to the real dynamical system.

PSR is a very recently introduced model and there are several open problems related

to it, in particular, how to efficiently identify the set of core tests? how to use PSR for

control, etc.

7.7 Quantifying the Difference between POMDPs

All stochastic models described so far can be used to model dynamical systems. A

model is, by nature, an abstraction of the real system. Very often, it is more interesting

to work with the model than the system itself mainly for two reasons. First, a model

is a mathematical representation of the system or the phenomenon that makes further

analysis more straightforward. Second, when the size of the real system is very large,

one is better considering a smaller and tractable approximating model that discards

“unimportant” details of the real system. Hence, the model may more or less deviate

from the original behavior. To which level the model deviates from the original behavior

is an important issue to assess the accuracy and fidelity of the model representation.

In particular, one may wonder to which level an optimal policy of a model remains

optimal in the real system. It is clear that a notion of distance or divergence between

the dynamical system and its model may play an important role in such situations.

In real scenarios, it is very common that one needs to confront two dynamical

systems to see whether they define the same behavior. For example, in presence of two

robots, each one trying to find the exit door in a different room, it is interesting to figure

out which robot has the simplest task. Depending on the situation, the comparison may

need to be performed between two models of the same type (e.g. two POMDPs, two

HMMs, two PSRs, etc), two models of different types (e.g. a POMDP and a PSR, a

MC and HMM, etc), or even directly between the dynamical systems themselves.

The divergence notion between stochastic systems presented so far in this thesis can

be applied in all these situations. Indeed, the approach we use is completely independent

of the internal structure of the stochastic systems to be compared and it does not pose

any restriction on them. It needs only the possibility to interact with them. This
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reduces to a prediction capability. That is, given a selected action, it returns the

resulting observation which can be an observation in a POMDP sense, a reward in an

MDP sense, success or failure in an LMP sense, etc. In the following we show how the

approach can be used to quantify the trace divergence between two POMDPs. However,

the ideas can be easily extended to the other types of models and to the other TOE

equivalences.

In Definition 7.3, a POMDP is defined as a tuple (S,A, T,O, ϕ,R). Note that

the reward obtained on a state can be seen as an observation. Hence, the POMDP

definition can be easily reformulated by considering rewards as part of observations

without loosing any expressive power. This results in a simpler structure of the POMDP

where the reward function is discarded, that is, a tuple (S,A, T,O, ϕ). This simpler

structure is used in the rest of this chapter.

7.7.1 Testing Trace Equivalence in POMDPs

Let P = (S,A, T,O, ϕ) be a POMDP and t = a1a2. . .an be a test generated from Ttrace

of Definition 2.7. Running a test t on P produces a sequence of observations of the

form e = o1o2. . .on where o1, o2, . . . , on are elements of O. The set of all such sequences

will be denoted O∗. For simplicity, we will make an abuse of notation and call them

observations.

The probability of observing e after running test t from state s, Qs
t(e), is equal to:

Qs
t(e) = Pr(o1, o2, . . . , on|a1, a2, . . . , an)

= Pr(on|a1o1. . .on-1an) × Pr(on-1|a1o1. . .on-2an−1) × . . .× Pr(o2|a1o1a2) × Pr(o1|a1)

where Pr(on|a1o1. . .on-1an) is the probability of observing on after running action an
given that the first n− 1 actions were a1, . . . , an−1 and the first n− 1 observations were

o1, . . . , on-1. Note that the second equality is a consequence of the Markov property. For

example, in Figure 7.4 (a), Pr(o4|ao1ao2c) = 1.

Given a state s, each test t defines a probability distribution Qs
t on observations of

O∗; in particular,
∑

e∈O∗ Qs
t (e) = 1. In Figure 7.4(a), Q0

a(o1) = 1
2

2
3
+1

2
0 = 1

3
, Q0

a(o5) = 1
6
,

and Q0
a(o3) = 1

2
. Also, for test t = aac, Q0

t (o1o2o4) = 1
3
, Q0

t (o5o2o4) = 1
6
, Q0

t (o3o5o1) = 1
8
,

and Q0
t (o3o5o2) = 3

8
.

According to Theorem 2.8, two POMDPs are trace equivalent if for any test gener-

ated from Ttrace they yield the same probability distribution on observations.
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(a) A POMDP example
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(b) Non K-moment equivalent POMDPs

Figure 7.4: Partially Observable Markov Decision Processes

7.7.2 Testing K-moment Equivalence in POMDPs

As discussed in Chapter 5, for many applications, trace equivalence does not discrim-

inate enough. This is also true for POMDPs. For instance, it cannot discriminate

between the POMDPs P1 and P2 of Figure 7.4(b). Indeed, in both POMDPs, test a

produces the observation o1 with probability 1, test ab produces observation o1o1 with

probability 1
3

and observation o1o2 with probability 2
3
. Hence, trace equivalence cannot

catch the fact that P1, after executing action a, can produce o1 and o2 from the same

state. However, K-moment does discriminate between them. Recall that a test t gen-

erated from the test grammar TKmoment of Definition 5.10 has the form t = ak1
1 a

k2
2 . . .akn

n .

Running the test t on a POMDP may produce an observation e which is longer than

the test t, that is, e = o11o12. . .o1k1
o21. . .o2k2

. . . . . .onkn
. K-moment can distinguish between

P1 and P2 of Figure 7.4 (b) with test t = ab2: in P1, Q
0
t (o1o1o2) = 2

9
whereas in P2,

Q0
t (o1o1o2) = 0.

For simplicity, we show how the problem of quantifying the trace-equivalence diver-

gence between POMDPs is formulated. Based on the results of the previous chapter,

the ideas can be generalized to K-moment equivalence as well as any TOE.

7.7.3 The Stochastic Game

Let P1 and P2 be two POMDPs with the same set of actions A and the same set of

observations O. As for LMPs “Impl”and “Spec”of Chapter 4, the idea is to define an
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• 0
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• 1
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• 1
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Figure 7.5: A generic example.

MDP out of P1 and P2 and to interpret the optimal value of this MDP as a divergence

between them. As in Chapter 4, we prefer introducing the MDP formulation by a

stochastic game which illustrates how the interaction with both POMDPs occur.

Recall that with LMPs, when an action is executed in a state, two outcomes are

possible: success or failure. However, with POMDPs, an action may yield several

observations. Hence, the symmetric and negative cases discussed in Section 4.2 can

occur in more complex forms. Consider the generic example of Figure 7.5. Note that

the clone of P2 is called P2Clone, or shortly P2c. In this example, when the POMDP

P1 runs action a, the observations o1, o2, and o3 can be generated with probabilities

q1, q2, and q3. For P2 and P2c, these probabilities ar p1, p2, and p3. Let us compute the

expected reward of policy π = a in the same spirit as Game0 in Section 4.2, that is,

R = (Obs.P1 6= Obs.P2) − (Obs.P2 6= Obs.P2c).

For any observation o ∈ O, let o designates any observation except o. Then,

Rπ=a(Reward) = Pr(〈o1o1o1〉)R(〈o1o1o1〉) + Pr(〈o1o1o1〉)R(〈o1o1o1〉)

+Pr(〈o1o1o1〉)R(〈o1o1o1〉) + Pr(〈o1o1o1〉)R(〈o1o1o1〉)

+Pr(〈o2o2o2〉)R(〈o2o2o2〉) + Pr(〈o2o2o2〉)R(〈o2o2o2〉)

+Pr(〈o2o2o2〉)R(〈o2o2o2〉) + Pr(〈o2o2o2〉)R(〈o2o2o2〉)

+Pr(〈o3o3o3〉)R(〈o3o3o3〉) + Pr(〈o3o3o3〉)R(〈o3o3o3〉)

+Pr(〈o3o3o3〉)R(〈o3o3o3〉) + Pr(〈o3o3o3〉)R(〈o3o3o3〉)

= q1(1 − p1)(1 − p1)(+1) + (1 − q1)p1p1(+1)

+ (1 − q1)(1 − q1)p1(−1) + q1p1(1 − p1)(−1)

+ q2(1 − p2)(1 − p2)(+1) + (1 − q2)p2p2(+1)

+ (1 − q2)(1 − q2)p2(−1) + q2p2(1 − p2)(−1)

+ q3(1 − p3)(1 − p3)(+1) + (1 − q3)p3p3(+1)

+ (1 − q3)(1 − q3)p3(−1) + q3p3(1 − p3)(−1)

= (2p1 − 1)(p1 − q1) + (2p2 − 1)(p2 − q2) + (2p3 − 1)(p3 − q3). (7.1)
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Equation (7.1) can be equal to zero for different combinations of values. To mention

only one: q1 = 1
2
, q2 = q3 = 1

4
, and p1 = p2 = p3 = 1

3
. Once again the solution for such

undesirable cases is to use prediction. The stochastic game with prediction proceeds as

follows:

GametracePOMDP: Put the three POMDPs (P1, P2, and P2c) on their initial states;

then

Step 1 : The player chooses an action and makes a prediction o of the obtained

observation on P2.

Step 2 : Action a is run on P1, P2. and P2c.

Step 3 : A reward is computed as follows. Writing 1 for P1, 2 for P2, 2c for P2c, and

Obs for observation,

R :=
(
Obs.2 = o

) (
(Obs.1 6= Obs.2) − (Obs.2 6= Obs.2c)

)
(7.2)

where 0 and 1 are used as both truth values and numbers. This reward will be

revealed to the player at the end of the game.

Step 4 : Repeat until the episode ends on one of the three processes.

7.7.4 MDP Formulation

The MDP corresponding to GametracePOMDP is defined as follows.

Definition 7.4. Given two POMDPs P1 and P2 with the same sets of actions and

observations, A and O, the induced MDP M is a tuple (S, i, Act, PrM , R). The set of

states S is the set of possible traces of the processes:

S := {τ : A∗}.

The initial state is i = ε (the empty sequence). The set of actions of M is:

Act := {ao | a ∈ A and o ∈ O}.

A state s = τ can make a transition to state s′ = τ a through actions of the form ao

with probability 1 and then obtain the reward of Equation (7.2). That is,

PrMs→s′(a
o) := 1 and Rao

s := Pr2(ao|s) (Pr2c(ao|s) − Pr1(ao|s)) (7.3)

where Pri(ao|s) is the conditional probability of observing o after action a given a

successfully executed trace s = τ in the POMDP Pi.
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The trace equivalence divergence between POMDPs can be defined as follows:

Definition 7.5. Let P1 and P2 be two POMDPs and i the initial state of their induced

MDP. We define their trace equivalence divergence as

divtrace(P1‖P2) := V ?(i).

This definition takes its origin in the following theorem.

Theorem 7.6. Let M be the MDP induced by POMDPs P1 and P2. If γ < 1 or

|M|<∞ then the optimal value V ?(i) is greater than or equal to 0, and V ?(i) = 0 if,

and only if, P1 and P2 are trace equivalent.

The proof is very similar to the proof of Theorem 6.7. Indeed, as a meta-action

α yields different possible outcomes in ψα, a simple action a in the case of POMDPs

yields several possible observations o1, o2, . . . , on.

7.7.5 Experimental Results

We made the following experiment on various benchmark problems from Tony Cassan-

dra’s POMDP web page [66] to check if, in practice, our algorithm can rapidly find

differences between slightly different POMDPs. The experimentation consists in com-

paring each POMDP benchmark with a slightly modified version of the same POMDP.

We chose the following modifications. We choose at random an action a, a state s of

the model and two other states s′ and s′′ reachable from s through a. Then we swap the

probabilities of the two next-state transitions from s to s′ and s′′. Table 7.1 shows the

result of this experimentation. For each benchmark (Column 1), Column 2 indicates

the number of states of the POMDP, Column 3 its number of actions, Column 4 the

number of episodes used by the algorithm, and Column 5 the selected precision (ε)

of the PAC lower bound of Equation (4.12) (Chapter 4). The confidence value δ of

that bound has been fixed to 0.05 for all benchmarks. The lower bound of divtrace is

given in Column 6. Note that this lower bound is positive for all benchmarks except

mini-hall2. This tends to confirm that, in practice, the algorithm is able to detect slight

differences. The negative lower bound in the case of mini-hall2 (-0.0033) can be ex-

plained by the fact that the divergence was too small to be detected after 106 episodes.

The large divergence value returned in the case of Shuttle Docking is due to the fact

that the benchmark turns out to be an MDP and hence, each state generates only one

observation with probability 1.
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] of ] of ] of ] of Precision Bottom bound

states actions observations episodes (ε) for divergence

Random POMDP 4 4 20 5 ∗ 105 0.005 0.0115

4x3 maze 11 4 18 106 0.005 0.0809

Cheese maze 11 4 7 2 ∗ 105 0.005 0.0335

Tiger 2 3 6 5 ∗ 105 0.005 0.0015

Shuttle docking 8 3 10 106 0.005 0.6949

Part painting 4 4 6 106 0.005 0.2289

mini-hall2 13 3 9 106 0.005 -0.0033

hallway 60 5 21 107 0.0005 0,000539

Table 7.1: The results of experimenting our divergence algorithm on slightly different

POMDPs.

7.8 Conclusion

In the last three decades, several stochastic formalisms have been proposed to model

dynamical systems. Depending on the characteristics of these systems (observability,

controllability, etc.) one might prefer to use a model rather than another. Partially

observable Markov decision process (POMDP) is considered as the most general model

since it can be used in partially observable and controllable environments. In this last

chapter, we showed how the main contribution of this thesis can be extended to quantify

the divergence between POMDPs. But more importantly, this chapter opens the way

to apply the proposed approach on other formalisms such as PSRs, HMMs, MDPs, etc.



Chapter 8

Conclusion

8.1 Summary of Contributions

The three main contributions of this thesis are:

1. a new approach to quantify the divergence between pairs of stochastic systems

based on reinforcement learning [10, 31]

2. a new family of equivalence notions, called K-moment which lies between trace

equivalence and bisimulation [11]

3. a refined testing framework, called TOE, to define equivalence notions [12].

The first and most important point of this thesis is that RL can be used to quantify

efficiently the divergence between stochastic systems. The idea is to define an MDP

out of the systems to be tested and then to interpret the optimal value of the MDP as

the divergence between the systems. From the optimal policy one can extract the test

that exhibits the most this divergence. The most appealing feature of the proposed

algorithm is that it does not rely on the knowledge of the internal structure of the

systems. Only a possibility of interacting with them is required. Because of this, the

approach can be applied to different types of stochastic systems. In this thesis, we

detailed the case of LMP and POMDP, however, one can straightforwardly extend the

ideas to MDPs, PSRs, etc.

The second contribution is a new family of equivalence notions, K-moment, that

constitute a good compromise between trace equivalence (too weak) and bisimulation
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(too strong). This family has natural definitions using, respectively, coincidence of

moments of random variables and the function F (the one whose fixed point corresponds

to bisimulation), but more importantly, it has a simple testing characterization. The

testing of K-moment does use the replication of states but not recursively. Recursive

replication is required to test bisimulation and for this reason the latter is considered

too strong.

The test-observation-equivalence (TOE) framework is the third contribution of this

thesis. It is a refined testing framework to define equivalence notions with more flexi-

bility. The idea is to make it possible to group together “similar” observations which

result in more appropriate observation functions. On one hand, this allows to focus only

on the important aspects of observations, on the other hand, it makes the evaluation

of tests more efficient since the number of observations can be considerably optimized.

Any equivalence notion defined as a TOE is recursive replication free (RRF). Hence, it

fits in the RL approach to quantify the divergence between stochastic processes.

8.2 Future Work

The first work we plan to investigate in the future is related to the main limitation

of the proposed approach, namely, the large number of actions of the induced MDP.

Indeed, since the immediate reward following an action depends on the prediction of

its outcome, the number of actions is multiplied by the number of possible outcomes of

each action. For example, in the particular case of POMDP, the number of actions of

the induced MDP is |A| × |O| where A and O are respectively the sets of actions and

observations of the two POMDPs to be compared. There are methods to reduce the

number. For example, up to bisimulation, we found that a POMDP with a very large

or continuous set of observations is equivalent to a POMDP whose observation set has

exactly two elements. However, further reduction is needed if one wants this method

to perform efficiently on huge systems.

The notion of divergence we propose in this thesis is not symmetric nor satisfying

the triangle inequality. A symmetric version of the divergence can be naturally defined

as:
div(P1 ||P2) + div(P2 ||P1)

2

A research direction we are considering is to explore more the properties of the diver-

gence notion. For instance, given two equivalent processes P1 and P2 (div(P1 ||P2) = 0)
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and a third one T , it is interesting to prove that:

div(P1 ||T ) = div(P2 ||T ).

Many practical applications can benefit from the proposed approach. For example,

the two use cases of Appendix B, namely, automatic speech recognition and DNA

sequence analysis. In the first, each word is represented by a HMM. The parameters of

the HMM are obtained by iterating over the training set. The iterations continue until

the parameters become relatively stable. Hence, each iteration involves the estimation

of the divergence between the new model and the previous one. Our approach can be

used at that level. In the second use case, the HMM is used to represent a gene or a

family of genes. Given a particular DNA sequence, one of the most important tasks

of DNA sequence analysis is to identify to which gene the sequence corresponds. Since

our approach is independent of the internal structure of stochastic processes, one can

use it to estimate the divergence between a DNA sequence and respectively, the HMMs

of all genes. The gene to which it corresponds will more likely be the one whose HMM

is closer to the sequence.

One of the important long term motivations of this thesis is to contribute to a

theory of approximation for stochastic systems, in particular for POMDPs. Most of

RL algorithms assume that the POMDP state space is finite, and hence, they store the

value of each state in a separate memory location. However, most practical applications

have very large state spaces, for which such representation is not feasible. Indeed, the

problem of finding a good state representation in stochastic systems with observations is

a topic of increasing interest. PSR [34] is a promising approach but there are many other

possibilities. For example, a new theoretical framework has been recently proposed

in [20]. The idea we want to explore is to reshape the divergence algorithm we presented

in this thesis to propose an approximation theory for POMDPs. The main objective is

to be able to construct small approximations of huge POMDPs. Traditional algorithms

can then be applied to solve the approximation POMDPs. But more importantly,

solving an approximation POMDP will give a sufficiently good estimation of how to

solve the original huge one.
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Appendix A

Tuning Q-learning Parameters

The RL algorithm we use in our implementation of the proposed approach is Q-learning.

The quality and the accuracy of the result returned by this algorithm depends on the

values of some parameters, in particular, the learning rate α, the exploration rate ε if

ε-greedy is used for action selection, and the temperature τ if the Softmax is used for

action selection. Tuning these parameters consists in figuring out the combination of

values that produces the best results, which can differ from one task to another. Intu-

itively, a good combination of values will guarantee a good tradeoff between exploration

and exploitation. The objective of this section is to illustrate the tuning procedure of

the Q-learning parameters for the kind of tasks described in this thesis, that is, solving

the MDP induced by “Impl” and “Spec”. For each one of the mentioned parameters,

we try several fixed values and also several functions to vary these values in the same

experiment. In order to obtain a useful combinations of values, we carry out the tuning

on an example that requires a good tradeoff between exploration and exploitation.

Consider the example of Figure A.1. The objective is to compute the trace equiva-

lence divergence between “Spec”and “Impl”. The optimal policy of the induced MDP is

π∗ = aXaXcXc× and V ∗(i) = 0.262 (i is the initial state of the MDP). This example is in-

teresting because the biggest difference between “Spec”and “Impl”occurs relatively deep

in the LMPs (states 6 in both processes.) However, there exists a sub-optimal policy

which is easier to detect but with lower value. This sub-optimal policy is π = bXaXbXcX

and V π(i) = 0.153. This example requires a good strategy of exploration in order to

figure out the optimal policy without prematurely converging to the sub-optimal policy.
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Figure A.1: Example for tuning

A.1 Learning Rate : α

Recall that the learning rate or the step-size parameter is used to update Q-values of

state-action pairs. A well known result in stochastic approximation theory states that,

in order to obtain convergence, two conditions are required for α:

∞∑

x=1

αx(s, a) = ∞ and
∞∑

x=1

α2
x(s, a) <∞

where αx(s, a) is the value of α when action a is selected from state s for the xth time.

Hence, the α parameter is typically computed in terms of x, the number of times the

state-action pair has been visited. In order to figure out a good function to vary α, we

try several functions, namely, a constant α = 0.1, 1
x
, 3
x
, and 1

1+ x
7
.

The experiment we perform is to run a task of Figure A.1 with 20 000 episodes and we

track the optimal value V ∗. For each of the 5 functions, we repeat the same experiment

7 times in order to figure out more clearly how the learning algorithm converges to

the optimal value. Hence, each of the following figures shows 7 plots obtained after

repeating the same task 7 times. The figures are centered around the optimal value

V ∗ = 0.262 represented by a line. Note also that the X axis is labelled to 5000 episodes

and not 20 000 because for plotting, we sampled the Q-values every 4 episodes.
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Figure A.2: Learning rate α = 0.1. With a constant α, the learning algorithm does not

converge.
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Figure A.3: Learning rate α decreasing according to function 1/x. With function 1
x
, we

obtain the best convergence results: the plots become stable after 4000 episodes.
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Figure A.4: Learning rate α decreasing according to function 3/x. The obtained results

are good but not as good as 1
x
.

alpha = 1/(1+ x/7)
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Figure A.5: Learning rate α decreasing according to the function
1

1 + x
7

.



Appendix A. Tuning Q-learning Parameters 138

A.2 Epsilon : ε

When using the ε-greedy method to select actions, the question is what is the best

value for ε? In this experiment, we tried the task of Figure A.1 with different ε values,

namely, a constant ε = 0.1, a variable ε decreasing from 0.3 to 0.1, and from 0.8 to 0.1.

ε is decreased according to the function ε = k
currentEpisode+l

where k and l are constants

computed in terms of the number of episodes as well as the first and the last values of

ε. For each ε value or function, we show the results in two figures. The first is obtained

by repeating the task of Figure A.1 7 times with 20 000 episodes each time and tracking

the optimal value whereas the second figure is obtained by repeating the same task 100

times but showing only the final optimal value. Both figures are centered around the

optimal value V ∗ = 0.262, represented with a line.
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Figure A.6: The action selection method used is ε-greedy with a fixed ε = 0.1. (Upper

figure) In 3 out of 7 experiments, the learning algorithm converges to the sub-optimal

policy π. This is due to insufficient exploration mainly in the first phases of the task.

(Lower figure) The upper dots indicate that the learning algorithm converged to the

optimal value V π∗
in 55 out of 100 experiments, while the lower dots indicate that the

learning algorithm prematurely converges to the sub-optimal policy π in 45 out of 100

experiments.
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Figure A.7: The action selection method used is ε-greedy with an ε decreasing from 0.3

to 0.1. (Upper figure) An ε decreasing from 0.3 to 0.01 will result in more exploration

in the first phase, which will make the learning algorithm discover the optimal policy

π∗ most of the time. In 2 out of 7 experiments, the algorithm prematurely converges

to the sub-optimal policy π. (Lower figure) In 23 experiments the learning algorithm

converges to the sub-optimal policy. Hence, still more exploration is required.
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Figure A.8: The action selection method used is ε-greedy with an ε decreasing from 0.8

to 0.1. (Upper figure) With ε decreasing from 0.8 to 0.01, we obtain the best results

for ε-greedy. In all of the 7 experiments, the algorithm converges to the optimal policy

π∗. (Lower figure) In only 7 experiments out of 100 the learning algorithm converges

to the sub-optimal policy. However, in the remaining 93 experiments, one can note the

high variance of the optimal values.
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A.3 Temperature : τ

If the Softmax action selection method is used, the parameter to tune is the temperature

τ . Recall that, the bigger τ is, more equiprobable the actions will be, and the smaller is

it, the more accentuated the probabilities of actions with different Q-values will be. We

tried Softmax with 3 different τ values, namely, 1, 5, and 0.01 in addition to a variable

τ decreasing from 5 to 0.01.
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Figure A.9: The action selection method is Softmax with a fixed τ = 1. (Upper figure)

With τ = 1, the learning algorithm finds the optimal policy π∗ in all experiments since

it explores very well. However, it does not exploit enough this optimal policy because

it continues exploration with the same rate until the end. (Lower figure) Most of the

time, the learning algorithm finds the optimal policy but it does not evaluate the policy

enough, which results in sparse dots around the optimal value.
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Figure A.10: The action selection method is Softmax with a fixed τ = 5. (Upper figure)

With τ = 5, actions with different values will be equiprobable. This is good in the first

phase where exploration is required. However, continuing the same strategy until the

end will prevent having an accurate value for the optimal policy. Hence, with τ = 5, the

learning algorithm lacks greediness in the later phase. (Lower figure) The dots indicate

higher variance in the optimal value estimates than with τ = 1.
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Figure A.11: The action selection method is Softmax with a fixed τ = 0.01. (Upper

figure) With τ = 0.01, the learning algorithm does not do enough exploration. In 6 out

of 7 experiments, it prematurely converges to the sub-optimal policy π. However, in

the single case where it converges to the optimal policy π∗, it returns a very accurate

estimation of its value. (Lower figure) In 84 out of 100 experiments, the algorithm

prematurely converges to the sub-optimal policy.



Appendix A. Tuning Q-learning Parameters 146

tau 5 --> 0.01


0


0.262


0.524


1
 1001
 2001
 3001
 4001


Episodes


O
pt

im
al

 V
al

ue



tau 5 --> 0.01


0


0.262


0.524


0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100


Experiments


O
pt

im
al

 V
al

ue



Figure A.12: The action selection method is Softmax with a temperature τ decreasing

from 5 to 0.01 according to the function τ = k
currentEpisode+l

where k and l are constants

computed in terms of the number of episodes as well as the first and the last values of

τ (5 and 0.01). (Upper figure) With τ decreasing from 5 to 0.01, we obtain the best

tradeoff between exploration and exploitation. (Lower figure) In all 100 experiments,

the learning algorithm converges to the optimal policy.



Appendix B

HMM Use Cases

B.1 Isolated Word Recognizer

One of the first and most successful utilization of HMM was in automatic speech recog-

nition [41, 42]. In automatic speech recognition, one is interested in identifying the

words articulated by a speaker. Obviously, the main difficulty in such systems lies in

the diversity of human voices which are characterized by different intonations, spectral

and temporal specificities. In the following, we show how HMM theory gets applied

in the design of a specific component of an automatic speech recognition system which

is the isolated word recognizer. As its name indicates, this component is in charge of

recognizing words uttered by a speaker. It takes as input a speech signal and returns

the word in the vocabulary corresponding to the sound signal. The key idea is to model

each word of the vocabulary as a distinct HMM and to consider each speech signal as

a sequence of observations. In this setting, the system will return as a result the word

of the vocabulary whose HMM maximizes the probability to accept the sequence of

observations given as input. Hence, the first step is to come up with a HMM for each

word of the vocabulary (we suppose that the vocabulary contains v words). Then each

speech signal must be processed according to Figure B.1. For this, the speech signal is

transformed into a sequence of short sounds (observations). Since it is of no particular

interest to the current illustration, we will not go through the details of this step. Then,

this sequence of observations is evaluated in each of the v HMMs of the vocabulary by

computing its probability to be accepted Pr(O|HMM i). The probability computation

is generally performed using the Viterbi algorithm [15, 60]. The word whose HMM

accepts the observation sequence with the maximum of probability is returned as a

result.
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Figure B.1: Steps of the word recognizer.
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Figure B.2: HMM representation of the word “yes”.

It is easy to see that the reliability of the isolated word recognizer depends particu-

larly on the quality of the HMM of each word. A good word model would assign high

probability to all sound sequences that are most likely pronunciations of the word it

models, and low probability to any other sequence. In order to construct the HMM for

a given word of the vocabulary, one needs to have the word uttered by a representative

set of speakers (male, female, serious voice, etc). This set is called the training set.

The model parameters of the HMM are chosen in such a way to optimize the accep-

tance likelihood for all sequences of the training set. Hence, the more representative

the training set is, the more reliable the constructed HMM will be. Let us go deeper in

the details and see the steps of the HMM construction.

The states of the HMM are generally chosen to be the phonemes of the word. A

phoneme is a sound of a language as represented without reference to its position in a

word. Hence, it is a conception of a sound in the most natural form possible. In other

approaches, a state corresponds to an observation interval (about 15 milliseconds).

Figure B.2 illustrates a HMM corresponding to the word “yes”. Notice also that the

HMM has a particular form. This type of HMMs is called left-right model where all

transitions are from left to right. It is the more appropriate model for this task since it

allows to associate time to model states.
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The first step of the construction is the initialization of the model. Generally, the

initial parameters of the model are chosen randomly. Let this initial model be called

λ0. Then, the following loop is entered:

Repeat

j = j + 1

For every sample of the training set

Segment the observation sequence between the states of λj
Estimate the parameters of the model

End

New model λj+1

Until (div(λj, λj+1) < ε)

Hence, for every sample of the training set, the observations are segmented between

the states. Then, the model parameters are updated according to this segmentation.

The HMM parameters get updated based on the training set until convergence, that

is, until the divergence between two successive models become insignificant (less than a

certain ε). After going through all samples of the training set, a new model is obtained

(λj+1). This model is compared with the old one. If the divergence is more than a given

threshold ε, the old model is replaced by the new one and the process is repeated. The

loop stops when the divergence between two successive models become negligible.

B.2 DNA Sequence Analysis

Another success story of HMMs can be found in bioinformatics. Indeed, HMMs have

been very helpful in several DNA and protein analysis related problems [14].

The entire biological information necessary for a living organism to generate new

cells is contained in its DNA (Deoxyribonucleic Acid). DNA can be viewed as a huge se-

quence of information encoded using 4 nucleobases: Adenin (A), Cytosine (C), Guanine

(G), and Thymine (T). For example, the human DNA is a sequence of around 3 billions

nucleobases located in 23 chromosomes. Biological information is organized inside the

DNA in the form of genes. A gene is a segment of DNA which represents a particular

characteristic of the living organism. The position, the limits, and the role of each gene

are the subject of extensive research in bioinformatics. Several intrinsic aspects of the

DNA make these kinds of tasks (and some others) difficult to undertake. First, not

all DNA sequences are useful and code genes: only 30% of DNA represents genes. All
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Figure B.3: HMM of a DNA sequence with insertions and deletions.

the rest of the bases are called intergenic blocks and are of no “apparently” usefulness.

Second, within the segment of a particular gene, there are three kinds of blocks: In-

trons, Exons, and regulatory sequences. Introns do not represent any apparently useful

information, Exons code the gene information, and the regulatory sequence specifies

how this particular gene is expressed in the hosting cell (whether a gene is active in a

cell depends on the type of the cell). Third, and more importantly, there are several

modifications (insertion, deletion, and substitution of Nucleobases) that happen within

DNA from one generation to the next. Currently, there is no explanation for these

modifications except the evolution theory; therefore these phenomena are considered as

perfectly random.

In this context, the HMM model turns out to be very helpful in the tasks of detecting

similarities between sequences and identifying the general pattern of a given gene. The

following example illustrates how HMMs can be used to recognize genes (or sequences

of Nucleobases) belonging to the same family in the presence of randomly deleted and

inserted information. First, suppose that the sequence of Nucleobases to be analyzed

has been precisely delimited. That is, the Intron and regulatory sequences have been

discarded. The sequence is viewed as a sequence of observations. Hence, we have an

observation set of size 4: A,C,G, and T . The HMM corresponding to the sequence will

have a form similar to Figure B.3. The first kind of states are match states (the boxes

in the middle). Each of the states can generate an observation with a corresponding

probability. The second type of states is the delete states (circles in the bottom) which



Appendix B. HMM Use Cases 151

allow to skip a match state, hence representing the deletion of Nucleobase. This type

of state does not generate an observation. The third type of states is the insertion

states (diamonds) which represents the insertion of Nucleobases. The self loop in the

insertion states models the possibility of multiple insertions between two match states.

Each state has 1, 2, or 3 outgoing transitions to other states, so each state defines

a probability distribution on the next states. Since match and insertion states can

generate observations, each one of them defines a probability distribution on the 4

possible observations A,C,G, T .

Once the HMM of a given gene or a family of genes is constructed, it can be used to

identify sequences of that family. Indeed, for each unknown sequence, one can simply

evaluate it in the model (HMM) and see how it scores. The score is the probability

of the sequence given the model. The question that remains to be answered is how to

estimate the parameters (observation and transition probabilities) of the HMM. Like

on the speech recognition case, the HMM parameters are estimated based on a training

set of sequences. The estimation starts with a randomly selected initial model, which

is then reestimated based on the training set until convergence (that is, until there are

no further changes to the model).
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