

Muhammad Ali Khan(a), Sajjad Mahmood(b)

(a) Preparatory Year Mathematics Program, (b) Information and Computer Science Department
King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

malikhan@kfupm.edu.sa, smahmood@kfupm.edu.sa

Abstract- In Component-based Software (CBS) development,

it is desirable to choose software components that provide all
necessary functionalities and at the same time optimize certain
nonfunctional attributes of the system (for example, system
cost). In this paper we investigate the problem of selecting
software components to optimize one or more nonfunctional
attributes of a CBS. We approach the problem through the
lexicographic multi-objective optimization perspective and
develop a scheme that produces Pareto-optimal solutions.
Furthermore we show that the Component Selection Problem
(CSP) can be solved in polynomial time if the components are
connected by serial interfaces and all the objectives are to be
minimized, whereas the corresponding maximization problem is
NP-hard.

I. INTRODUCTION

The extensive use of software has placed new expectations
on software industry [1] and there is an ever growing push
towards software reuse. Component-based software (CBS)
development is an approach that aims to move the software
industry away from developing each system from scratch. It
focuses on integrating existing off-the-shelf components to
build a software system, with a potential benefit of delivering
quality system by using quality components. The success of
CBS [2, 3, 4] depends on the ability to select suitable
components. An inappropriate component selection can lead
to adverse effects, such as introducing extra cost, in
integration and maintenance phases [3].

Nonfunctional aspects play a significant role in
determining software quality. Given the fact that lack of
proper handling of nonfunctional aspects [5] of a software
application has led to a series of software failures (e.g. [6]),
nonfunctional attributes such as reliability, security and
performance should be considered during the component
selection phase of CBS development. Its importance for CBS
development is further highlighted as component selection is
a complex and risk prone process. We believe that for CBS to
become part of mainstream software engineering culture

there is a need for component selection approaches that take
into consideration the nonfunctional aspects of a system.

In this paper, we present a component selection approach
that qualifies nonfunctional attributes of the system and helps
system analysts to evaluate the suitability of a component for
a software application. The component selection problem
(CSP) is represented as a multi-objective optimization
problem on a clustered graph, with nonfunctional attributes
formulated as objective functions. We use metrics to quantify
contributions of components and their associated interfaces to
each objective function. A lexicographic optimization
algorithm is proposed that generates Pareto-optimal solutions
for CSP.

Our approach is more general compared to existing
component selection techniques (for example, [7, 8, 9, 10]),
as we make no assumptions regarding the nature of interfaces
and our lexicographic procedure can optimize any number of
nonfunctional objectives. Furthermore, we analyze the
computational complexity of component selection in detail,
pointing out both polynomially solvable and NP-hard
instances.

The rest of this paper is organized as follows. Section II
reviews related literature. In Section III, we model CSP as an
optimization problem. Section IV describes the lexicographic
multi-objective framework for solving CSP while Section V
deals with computational complexity of the problem. We
conclude the paper by outlining our contributions and future
work in Section VI.

II. RELATED WORK

Most component selection approaches are based on system
functionalities or system architecture [9]. Considerably less
attention has been devoted to component selection based on
desired nonfunctional system attributes.

Lee et al. [11] have presented a component identification
algorithm with focus on high cohesion and low coupling
values. For the component identification process, at first,

T. Sobh, K. Elleithy (eds.), Innovations in Computing Sciences and Software Engineering,
DOI 10.1007/978-90-481-9112-3_ , © Springer Science+Business Media B.V. 2010 79

467

Optimal Component Selection for
Component-Based Systems

architecture design is analyzed to identify the architecture
layers and subsystems. In the next step, the subsystem
dependencies are determined using sequence diagrams. The
subsystems are re-organized to make subsystem dependency
less complex. This re-organization of subsystems is
performed by re-arranging classes among subsystems. After
subsystems are re-organized, the clustering algorithm is used
to identify components. In [7] an approach has been proposed
which assists in selecting components by using a clustering
algorithm based on a set of predefined rules and heuristics.

Simulation composability is another well-known approach
to adaptable component selection. In [12] it is shown that the
complexity of optimal selection of adaptable components
varies from polynomial to NP-complete, and even
exponential depending on our assumptions.

Haghpanah et al. [9] have formulated component selection
in terms of a series of feature subset selection problems.
However, they point out that incorporating nonfunctional
requirements into their solution framework remains a
challenge.

Our work is motivated by the need for a general
component selection scheme that achieves the optimal trade-
off among nonfunctional attributes of a system. The same
problem has been considered by Sedigh-Ali and Ghafoor [8].
One of the limitations of their graph-theoretic model is that it
only applies when all components are linked by serial
interfaces. Furthermore, the problem was formulated only to
optimize three specific nonfunctional attributes (cost,
reliability and complexity). We also use a graph-based
representation for component selection but contrary to [9], we
do not assume serial interfaces and our lexicographic multi-
objective optimization technique works for any number of
nonfunctional attributes.

Recently, Vescan et al. [10] have formulated the
component selection as a multi-objective problem. They use
an evolutionary computation technique to select a set of
components which can satisfy a given set of functional
requirements while minimizing the costs associated with
component selection. One of the limitations of their work is
that component compatibilities and integration effort are not
considered. We address this issue in the present work.

III. PROBLEM FORMULATION

In this section we describe a general instance of the
component selection problem using clustered graphs.

A. Assumptions

Suppose we want to develop a CBS with p system
functionalities labeled 1, 2, … , p. We assume that for each
required functionality i a set Ci of candidate components is

available, each providing the same level of functionality i.
We further assume that the sets Ci are pairwise disjoint, that
is for . Thus a candidate component can

provide a single functionality only. We would like to
emphasize that these assumptions are not oversimplifying and
are standard in CBS literature [8] as they can be reasonably
satisfied by choosing components of suitable granularity.
Unlike in [8] we assume nothing regarding the nature of
interfaces between components (although later on we shall
see that the type of interfaces has a significant impact on the
computational complexity of the problem). Finally let n be
the total number of candidate components.

B. Representation

We represent the problem as a clustered graph
with node set and edge set E. Let and
where denotes the number of elements in set . A node x
corresponds to a candidate component and the node set is
partitioned into p clusters C1, C2, …, Cp , one for each set of
candidate components. An interface between two components
x and y is represented by an undirected edge (x, y). We say
that cluster Ci and Cj are adjacent, denoted by , if

components (nodes) in Ci and Cj are linked by interfaces
(edges). We define an induced subgraph s of G as a subgraph
containing all edges between its nodes [13, p. 49].

This graphical representation is similar to the ones given
in [8] and [14] but is more general. The nonfunctional
attributes of a CBS depend on the nonfunctional attributes of
its components (nodes) and their interfaces (edges). Examples
of such attributes include cost, reliability, response time and
complexity of the system [15, p. 160]. We would obviously
like to maximize the first two while minimizing the later two.
A nonfunctional attribute can be quantified by defining a
suitable metric.

Suppose that we are interested in optimizing the
nonfunctional metrics F1, F2, …, Fr. and numerical values of
all metrics of interest are known for every component and
likewise for every interface. Since we are formulating
component selection as an optimization problem, we shall
call F1, F2, …, Fr the objective functions or simply objectives,
each to be maximized or minimized.

Let the metric fk(x) denote the contribution of component
(node) x, if selected in a feasible solution s, to the kth
objective function Fk and fk(x,y) the corresponding
contribution of the interface (edge) (x, y). The component
level metrics describe the role of each component in the
system, while the interface level metrics encompass the effect
of integrating individual components. For instance if Fk
represents the cost objective then fk(x) is the cost of acquiring

KHAN AND MAHMOOD 468

component x. Whereas fk(x, y) can be interpreted as the cost
of acquiring middleware or the cost of developing the
integration code internally for components x and y.

Fig. 1. An instance of the component selection problem

We remark that the values of component level metrics can
be found through a variety of sources such as vendor
specifications, black-box testing, simulation and
extrapolating the market data [8]. The same applies to
interface metrics if the integration code is obtained as
middleware. For internally written integration code white-box
testing can be used.

C. Statement of Problem

We can now state the component selection problem (CSP)
as a multi-objective optimization problem (MOP) that asks
for an induced subgraph s of G containing exactly one node
(component) from each cluster Ci such that all the objectives
F1, F2, …, Fr are optimized.

A typical instance of the component selection problem is
shown in Fig. 1. Our approach to solving CSP is described in
the next section.

IV. SOLVING COMPONENT SELECTION PROBLEM AS MOP

Compared to single objective optimization problems,
solving MOPs require more sophisticated techniques as we
try to strike an optimal balance among different objective
functions. Instead of looking for a single optimum we have to
search for the Pareto front (also known as Pareto set) which
is the set of non-dominated solutions that cannot be improved
in one objective without worsening another [16, p. 19].
Several methods are known to achieve this such as
lexicographic multi-objective optimization (LMO), aggregate
objective function (AOF) method, goal programming (GP)
and evolutionary multi-objective optimization (EMO).

Although evolutionary algorithms have been preferred in
recent literature on component selection [9, 10], we adopt
LMO based on following grounds:

• Evolutionary algorithms (EAs) are problem independent
and thus provide little insight into the nature and
complexity of the problem. Furthermore theories
explaining how EAs perform are few and only recently
some progress has been made on rigorously analyzing
the computational complexity of EAs [17].

• Goal programming is attractive for its ease of
implementation. However it is known to produce
solutions that are not Pareto efficient [18].

• Despite the fact that AOF method is probably the most
intuitive multi-objective optimization method it suffers
from several drawbacks. Firstly by combining different
objective functions into a single AOF the multi-objective
nature of the problem is lost. Secondly most AOF
techniques such as the weighted-sum method tend to be
highly subjective. Last but not the least AOF methods
fail when the Pareto front is concave [19].

• An LMO scheme orders the solution vectors
lexicographically according to a priority ranking of
objectives. The LMO optimizes a first objective and then
as far as a choice remains a second one and so on. The kth
objective in the ranking is considered only after the prior

objectives have been successively optimized. LMO
is subjective as it depends on a priority ranking.
However, this approach lends itself to component
selection problem as nonfunctional software attributes
are always subject to stakeholder’s priorities. A domain
expert plays an important role in assessing the relative
importance of nonfunctional attributes of interest and can
prioritize the objectives accordingly. Moreover, LMO
always produces Pareto-optimal solutions [16, p. 135], it
is fast and allows a rigorous computational complexity
analysis (refer to Section V for details).

In this paper, our proposed LMO solution is inspired by
Volgenant’s work [20]. We have selected Volgenant method
as it is particularly suitable for shortest path type problems;
and many special instances of component selection problem
are multi-objective variants of the shortest path problem.

A. The Lexicographic Approach

All objectives considered in this paper are sum objectives.
A sum objective F can be expressed mathematically as

, where is the sum of contributions to the
objective F of all components and interfaces occurring in a

OPTIMAL COMPONENT SELECTION 469

feasible solution s. Many objectives that do not appear to be
sum objectives can be represented in this way. For instance
an objective of the form , where every f > 0, can be
transformed into an equivalent sum objective

.

We point out that restricting to sum objectives does not
result in a significant loss of generality as most nonfunctional
software attributes fall in this category (e.g., cost, response
time and complexity are sum objectives while reliability can
also be expressed as a sum objective).

Recall that an instance of CSP consists of a clustered
graph with node set partitioned into p clusters
C1, C2, …, Cp, edge set E and a series of (sum) objective
functions F1, F2, …, Fr , each to be maximized or minimized.
A feasible solution is an induced subgraph s of G containing
exactly one node from each cluster. For each component
(node) x the values f1(x), f2(x), …, fr(x) are known and
likewise for each interface (edge) (x, y).

Let F be an objective of interest (one of F1, F2, …, Fr) for
the above CSP instance Let S(E) denote the set of feasible
solutions and S*(E) the set of optimal solution over the edge
set E for the objective function F. We introduce the quantities

If then the optimal value of objective function
 remains unchanged under the additional constraint that

 must occur in an optimal solution. We now define

 We observe that is the union of edge sets of all optimal
solutions of F. Let be the graph with edge set and node
set consisting of end nodes of edges in . Then is also
a clustered graph with p clusters. We further note that is
completely determined by its edge set so it suffices to
consider only.
 The next theorem shows that for any objective F the set of
optimal solutions over E is equal to the set of feasible
solutions over E *.

Theorem 1 For a given objective F we have .

Proof. Suppose an optimal solution contains an
edge with . Then and the
solution s* can be improved by replacing the edge with

a better alternative. This contradicts the optimality of s*. Thus
s* only contains edges from E*.

 Conversely assume that a feasible solution
contains an edge . Then and so .
This is true for all edges of s. Therefore .

 Volgenant [20] proved the directed edge version of
Theorem 1 on the same lines. Based on this result he
proposed an iterative scheme for solving LMO instances.
Volgenant’s scheme can be adapted to solve CSP as follows:

Procedure: Lex CSP

Initialization
 Iteration
 determine Ek

* and S*(Ek)
 Termination If and
 then go to Iteration
 else the CSP instance has been solved.

 It must be noted that the objectives should be arranged in

ascending order of priority with Fr being the most important.
The procedure starts with the edge set and successively
reduces it () until either all
objectives are optimized or there is only one solution
left .

B. Optimizing Individual Objectives

Every iteration of the above procedure corresponds to
maximizing or minimizing a single objective over an
undirected clustered graph with node clusters

. We can formulate this single objective
optimization problem as a {0, 1}-integer linear program (ILP)
by introducing the variables

 The linear programing relaxation of the resulting ILP can

be solved by a suitable branch and bound algorithm.

V. COMPUTATIONAL COMPLEXITY AND NP-HARDNESS

The run time complexity of Lex CSP procedure developed
in Section III depends on how fast the quantities and the
edge set Ek

* can be determined during an iteration.

KHAN AND MAHMOOD 470

 Using the notation of [20] let be the time to solve
a single objective CSP on n nodes and m edges. Given an
edge we can calculate by solving the single
objective CSP under the restriction that must appear in
an optimal solution. The restricted problem can be solved in
time as two nodes and one edge have been
fixed. If the optimal objective value of the restricted problem
is the same as the original problem then ;
otherwise . Hence the set Ek

* can be determined
in time . For most practical
applications the complexity is dominated by the term

. The running time of Lex CSP is therefore
 where r is the number of objectives.

A. The Case of Serial Interfaces

The run time strongly depends on the nature of
component interfaces; and also on whether the objective is
being maximized or minimized. An important special case of
CSP occurs when the components are connected by serial
interfaces [8] (see Fig.2.).

Fig. 2. Component selection problem with serial interfaces

Under this assumption the single objective minimization

CSP reduces to a variant of all pairs shortest path problem
that can be solved by a Floyd-Warshall type algorithm in time

. Thus if all objectives are to be minimized,
the Lex CSP procedure solves the multi-objective CSP in
time at most .

The single objective maximization CSP is much harder to
solve as it is equivalent to the all pairs longest path problem
which is known to be NP-hard.

Therefore we conclude that the multi-objective
minimization CSP can be solved in polynomial time if the
components are connected through serial interfaces; while the
corresponding maximization CSP is NP-hard.

VI. CONCLUDING REMARKS

In this paper, we have presented a new technique for
component selection that guides system analysts through a
process of identifying suitable components that optimize one
or more nonfunctional attributes of a CBS. We formulate
component selection as a lexicographic multi-objective
optimization problem, with an aim to optimize nonfunctional
objectives, and present an efficient solution scheme. The
proposed model guides selection by identifying components
that will collectively achieve the best tradeoff among the
metrics desired for the system. This technique results in a
quality management method that can alleviate concerns
regarding uncertainty in the cost and quality of a component-
based system. The complexity of component selection
problem has also been examined extensively.

In future, there is a need to have an integrated
requirements analysis and component selection process that
analyzes both functional and nonfunctional system
requirements and extends the presented technique to select
optimal set of components. We also plan to conduct an
empirical study to better understand the benefits and
limitations of our component selection process for a CBS.

ACKNOWLEDGMENT

The authors would like to thank King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia for
continuous support in research.

REFERENCES

[1] S. Mahmood, R. Lai, Y. S. Kim, J. H. Kim, S. C. Park and H. S. Oh, “A
survey of component based system quality assurance and assessment,”
Information and Software Technology, vol. 47, pp. 693 – 707, 2005.

[2] N. A. Maiden and C. Ncube, “Acquiring COTS software selection
requirements,” IEEE Software, vol. 15, pp. 46 – 56, 1998.

[3] K. R. P. H. Leung and H. K. N. Leung, “On the efficiency of domain
based COTS product selection method,” Information and Software
Technology, vol. 44, pp. 703 – 715, 2002.

[4] C. Alves and A. Finkelstein, “Investigating conflicts in COTS decision
making,” International Journal of Software Engineering and
Knowledge Engineering, vol. 13, pp. 1 – 21, 2003.

[5] L. M. Cysneiros and J. C. S, Leite, “Nonfunctional requirements: from
elicitation to conceptual models,” IEEE Transactions on Software
Engineering, vol. 30, pp. 328 - 350, 2004.

[6] A. Finkelstein and J. Dowell, “A comedy of errors: the London
ambulance service case study,” Proc. of Eight International Workshop
on Software, Specification and Design, pp. 2 - 5, 1996.

[7] H. Jain, N. Chalimeda, N. Ivaturia and B. Reddy, “Business component
identification: a formal approach,” Proc. of Fifth International
Conference on Enterprise Distributed Object Computing, pp. 183 -
187, 2001.

[8] S. Sedigh-Ali, and A. Ghafoor, “A graph-based model for component-
 based software development”, Proc. of the 10th IEEE Workshop on
 Object-Oriented Real-Time Dependable Systems, 2005.

OPTIMAL COMPONENT SELECTION 471

 [9] N. Hagpanah, S. Moaven, J. Haibibi, M. Kargar and S. H. Yaganeh,
“Approximation algorithm for software component selection problem,”
Proc. of 14th Asia Pacific Software Engineering Conference, pp. 159 -
166, 2007.

[10] A. Vescan, C. Grosan and H. F. Pop, “Evolutionary algorithms for the
component selection problem,” Proc. of 19th International Conference
on Database and Expert Systems Application, pp. 509 - 513, 2008.

[11] J. K. Lee, S. J. Jung, S. D. Kim, W. H. Jang and D. H. Ham, “Component
identification method with coupling and cohesion,” Proc. of Eight Asia
Pacific Software Engineering Conference, pp. 79 - 86, 2001.

[12] R. G. Bartholet, D. C. Brogan and P. F. Reynolds, “The computational
complexity of component selection in simulation reuse,” Proc. of the
2005 Winter Simulation Conference, pp. 2472 - 2481, 2005.

[13] J. Gross and J. Yellen, Graph Theory and its Applications, FL: CRC
Press Inc., 1999.

[14] S. Krishnamurthy and A. Mathur, “On the estimation of reliability of a
software system using reliabilities of its components,” In Proc. of the
8th Int’l Symp. on Software Reliability Eng. (ISSRE ’97), 1997.

[15] L. Chung, B.A. Nixon, E. Yu and J. Mylopoulos, Non-functional
Requirements in Software Engineering, Kluwer International Series
in Software Engineering Vol. 5, Kluwer Academic Publishers,
2000.

[16] M. Ehrgott, Multicriteria Optimization, Lecture Notes in Economics
and Mathematical Systems (no. 491), Berlin: Springer-Verlag, 2000.

[17] P. S. Oliveto, J. He, and X. Yao, “Time complexity of evolutionary
algorithms for combinatorial optimization: A decade of results,”
International Journal of Automation and Computing, vol. 4, pp. 281-
293, 2007.

[18] Caballero R., L. Rey and F. Ruiz, “Determination of Satisfying and
Efficient Solutions in Convex Multiobjective Programming,”
Optimization, vol. 37, no. 2, pp. 125-137, 1996.

[19] I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing
weighted-sums of objectives for Pareto set generation in multicriteria
optimization problems,” Structural Optimization vol. 14, pp. 63–69,
1997.

[20] A. Volgenant, “Solving Some Lexicographic Multi-objective
Combinatorial Problem,” European Journal of Operational Research,
vol. 139, no. 3, pp. 578-584, 2002.

KHAN AND MAHMOOD 472

	Optimal Component Selection forComponent-Based Systems
	I. INTRODUCTION
	II. RELATED WORK
	III. PROBLEM FORMULATION
	A. Assumptions
	B. Representation
	C. Statement of Problem

	IV. SOLVING COMPONENT SELECTION PROBLEM AS MOP
	A. The Lexicographic Approach
	B. Optimizing Individual Objectives

	V. COMPUTATIONAL COMPLEXITY AND NP-HARDNESS
	A. The Case of Serial Interfaces

	VI. CONCLUDING REMARKS
	ACKNOWLEDGMENT
	REFERENCES

