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Abstract- In Component-based Software (CBS) development, 

it is desirable to choose software components that provide all 
necessary functionalities and at the same time optimize certain 
nonfunctional attributes of the system (for example, system 
cost). In this paper we investigate the problem of selecting 
software components to optimize one or more nonfunctional 
attributes of a CBS. We approach the problem through the 
lexicographic multi-objective optimization perspective and 
develop a scheme that produces Pareto-optimal solutions. 
Furthermore we show that the Component Selection Problem 
(CSP) can be solved in polynomial time if the components are 
connected by serial interfaces and all the objectives are to be 
minimized, whereas the corresponding maximization problem is 
NP-hard.  

 
I. INTRODUCTION 

 

The extensive use of software has placed new expectations 
on software industry [1] and there is an ever growing push 
towards software reuse. Component-based software (CBS) 
development is an approach that aims to move the software 
industry away from developing each system from scratch. It 
focuses on integrating existing off-the-shelf components to 
build a software system, with a potential benefit of delivering 
quality system by using quality components. The success of 
CBS [2, 3, 4] depends on the ability to select suitable 
components. An inappropriate component selection can lead 
to adverse effects, such as introducing extra cost, in 
integration and maintenance phases [3].  

Nonfunctional aspects play a significant role in 
determining software quality. Given the fact that lack of 
proper handling of nonfunctional aspects [5] of a software 
application has led to a series of software failures (e.g. [6]), 
nonfunctional attributes such as reliability, security and 
performance should be considered during the component 
selection phase of CBS development. Its importance for CBS 
development is further highlighted as component selection is 
a complex and risk prone process. We believe that for CBS to 
become part of mainstream software engineering culture 

there is a need for component selection approaches that take 
into consideration the nonfunctional aspects of a system.  

In this paper, we present a component selection approach 
that qualifies nonfunctional attributes of the system and helps 
system analysts to evaluate the suitability of a component for 
a software application. The component selection problem 
(CSP) is represented as a multi-objective optimization 
problem on a clustered graph, with nonfunctional attributes 
formulated as objective functions. We use metrics to quantify 
contributions of components and their associated interfaces to 
each objective function. A lexicographic optimization 
algorithm is proposed that generates Pareto-optimal solutions 
for CSP.  

Our approach is more general compared to existing 
component selection techniques (for example, [7, 8, 9, 10]), 
as we make no assumptions regarding the nature of interfaces 
and our lexicographic procedure can optimize any number of 
nonfunctional objectives. Furthermore, we analyze the 
computational complexity of component selection in detail, 
pointing out both polynomially solvable and NP-hard 
instances.  

The rest of this paper is organized as follows. Section II 
reviews related literature. In Section III, we model CSP as an 
optimization problem. Section IV describes the lexicographic 
multi-objective framework for solving CSP while Section V 
deals with computational complexity of the problem. We 
conclude the paper by outlining our contributions and future 
work in Section VI.   

 
II. RELATED WORK 

 

Most component selection approaches are based on system 
functionalities or system architecture [9]. Considerably less 
attention has been devoted to component selection based on 
desired nonfunctional system attributes. 

Lee et al. [11] have presented a component identification 
algorithm with focus on high cohesion and low coupling 
values. For the component identification process, at first, 
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architecture design is analyzed to identify the architecture 
layers and subsystems. In the next step, the subsystem 
dependencies are determined using sequence diagrams. The 
subsystems are re-organized to make subsystem dependency 
less complex. This re-organization of subsystems is 
performed by re-arranging classes among subsystems. After 
subsystems are re-organized, the clustering algorithm is used 
to identify components. In [7] an approach has been proposed 
which assists in selecting components by using a clustering 
algorithm based on a set of predefined rules and heuristics.  

Simulation composability is another well-known approach 
to adaptable component selection. In [12] it is shown that the 
complexity of optimal selection of adaptable components 
varies from polynomial to NP-complete, and even 
exponential depending on our assumptions.  

Haghpanah et al. [9] have formulated component selection 
in terms of a series of feature subset selection problems. 
However, they point out that incorporating nonfunctional 
requirements into their solution framework remains a 
challenge.  

Our work is motivated by the need for a general 
component selection scheme that achieves the optimal trade-
off among nonfunctional attributes of a system. The same 
problem has been considered by Sedigh-Ali and Ghafoor [8]. 
One of the limitations of their graph-theoretic model is that it 
only applies when all components are linked by serial 
interfaces. Furthermore, the problem was formulated only to 
optimize three specific nonfunctional attributes (cost, 
reliability and complexity). We also use a graph-based 
representation for component selection but contrary to [9], we 
do not assume serial interfaces and our lexicographic multi-
objective optimization technique works for any number of 
nonfunctional attributes.  

Recently, Vescan et al. [10] have formulated the 
component selection as a multi-objective problem. They use 
an evolutionary computation technique to select a set of 
components which can satisfy a given set of functional 
requirements while minimizing the costs associated with 
component selection. One of the limitations of their work is 
that component compatibilities and integration effort are not 
considered. We address this issue in the present work. 

 
III. PROBLEM FORMULATION 

 

In this section we describe a general instance of the 
component selection problem using clustered graphs.  
 
A. Assumptions 

Suppose we want to develop a CBS with p system 
functionalities labeled 1, 2, … , p. We assume that for each 
required functionality i a set Ci of candidate components is 

available, each providing the same level of functionality i. 
We further assume that the sets Ci are pairwise disjoint, that 
is  for . Thus a candidate component can 

provide a single functionality only. We would like to 
emphasize that these assumptions are not oversimplifying and 
are standard in CBS literature [8] as they can be reasonably 
satisfied by choosing components of suitable granularity. 
Unlike in [8] we assume nothing regarding the nature of 
interfaces between components (although later on we shall 
see that the type of interfaces has a significant impact on the 
computational complexity of the problem). Finally let n be 
the total number of candidate components. 

 
B. Representation 

We represent the problem as a clustered graph  
with node set  and edge set E. Let  and   
where  denotes the number of elements in set . A node x 
corresponds to a candidate component and the node set is 
partitioned into p clusters C1, C2, …, Cp , one for each set of 
candidate components. An interface between two components 
x and y is represented by an undirected edge (x, y). We say 
that cluster Ci and Cj are adjacent, denoted by , if 

components (nodes) in Ci and Cj are linked by interfaces 
(edges). We define an induced subgraph s of G as a subgraph 
containing all edges between its nodes [13, p. 49].  

This graphical representation is similar to the ones given 
in [8] and [14] but is more general. The nonfunctional 
attributes of a CBS depend on the nonfunctional attributes of 
its components (nodes) and their interfaces (edges). Examples 
of such attributes include cost, reliability, response time and 
complexity of the system [15, p. 160]. We would obviously 
like to maximize the first two while minimizing the later two. 
A nonfunctional attribute can be quantified by defining a 
suitable metric.  

Suppose that we are interested in optimizing the 
nonfunctional metrics F1, F2, …, Fr. and numerical values of 
all metrics of interest are known for every component and 
likewise for every interface. Since we are formulating 
component selection as an optimization problem, we shall 
call F1, F2, …, Fr the objective functions or simply objectives, 
each to be maximized or minimized.  

Let the metric fk(x) denote the contribution of component 
(node) x, if selected in a feasible solution s, to the kth 
objective function Fk and fk(x,y) the corresponding 
contribution of the interface (edge) (x, y). The component 
level metrics describe the role of each component in the 
system, while the interface level metrics encompass the effect 
of integrating individual components. For instance if Fk 
represents the cost objective then fk(x) is the cost of acquiring 
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component x. Whereas fk(x, y) can be interpreted as the cost 
of acquiring middleware or the cost of developing the 
integration code internally for components x and y. 
 

 
Fig. 1. An instance of the component selection problem 

 

We remark that the values of component level metrics can 
be found through a variety of sources such as vendor 
specifications, black-box testing, simulation and 
extrapolating the market data [8]. The same applies to 
interface metrics if the integration code is obtained as 
middleware. For internally written integration code white-box 
testing can be used. 

 
C. Statement of Problem  

We can now state the component selection problem (CSP) 
as a multi-objective optimization problem (MOP) that asks 
for an induced subgraph s of G containing exactly one node 
(component) from each cluster Ci such that all the objectives 
F1, F2, …, Fr are optimized.  

A typical instance of the component selection problem is 
shown in Fig. 1. Our approach to solving CSP is described in 
the next section. 

 
IV. SOLVING COMPONENT SELECTION PROBLEM AS MOP 

 

Compared to single objective optimization problems, 
solving MOPs require more sophisticated techniques as we 
try to strike an optimal balance among different objective 
functions. Instead of looking for a single optimum we have to 
search for the Pareto front (also known as Pareto set) which 
is the set of non-dominated solutions that cannot be improved 
in one objective without worsening another [16, p. 19]. 
Several methods are known to achieve this such as 
lexicographic multi-objective optimization (LMO), aggregate 
objective function (AOF) method, goal programming (GP) 
and evolutionary multi-objective optimization (EMO). 

Although evolutionary algorithms have been preferred in 
recent literature on component selection [9, 10], we adopt 
LMO based on following grounds: 

 

• Evolutionary algorithms (EAs) are problem independent 
and thus provide little insight into the nature and 
complexity of the problem. Furthermore theories 
explaining how EAs perform are few and only recently 
some progress has been made on rigorously analyzing 
the computational complexity of EAs [17].     

 

• Goal programming is attractive for its ease of 
implementation. However it is known to produce 
solutions that are not Pareto efficient [18].   

 

• Despite the fact that AOF method is probably the most 
intuitive multi-objective optimization method it suffers 
from several drawbacks. Firstly by combining different 
objective functions into a single AOF the multi-objective 
nature of the problem is lost. Secondly most AOF 
techniques such as the weighted-sum method tend to be 
highly subjective. Last but not the least AOF methods 
fail when the Pareto front is concave [19].    

 

• An LMO scheme orders the solution vectors 
lexicographically according to a priority ranking of 
objectives. The LMO optimizes a first objective and then 
as far as a choice remains a second one and so on. The kth 
objective in the ranking is considered only after the prior 

objectives have been successively optimized. LMO 
is subjective as it depends on a priority ranking. 
However, this approach lends itself to component 
selection problem as nonfunctional software attributes 
are always subject to stakeholder’s priorities. A domain 
expert plays an important role in assessing the relative 
importance of nonfunctional attributes of interest and can 
prioritize the objectives accordingly. Moreover, LMO 
always produces Pareto-optimal solutions [16, p. 135], it 
is fast and allows a rigorous computational complexity 
analysis (refer to Section V for details).  

 

In this paper, our proposed LMO solution is inspired by 
Volgenant’s work [20]. We have selected Volgenant method 
as it is particularly suitable for shortest path type problems; 
and many special instances of component selection problem 
are multi-objective variants of the shortest path problem.  
 
A. The Lexicographic Approach 

All objectives considered in this paper are sum objectives. 
A sum objective F can be expressed mathematically as         

, where  is the sum of contributions to the 
objective F of all components and interfaces occurring in a 

OPTIMAL COMPONENT SELECTION 469



feasible solution s. Many objectives that do not appear to be 
sum objectives can be represented in this way. For instance 
an objective of the form , where every f > 0, can be 
transformed into an equivalent sum objective 

 

. 
 

We point out that restricting to sum objectives does not 
result in a significant loss of generality as most nonfunctional 
software attributes fall in this category (e.g., cost, response 
time and complexity are sum objectives while reliability can 
also be expressed as a sum objective). 

Recall that an instance of CSP consists of a clustered 
graph  with node set  partitioned into p clusters 
C1, C2, …, Cp, edge set E and a series of (sum) objective 
functions F1, F2, …, Fr , each to be maximized or minimized. 
A feasible solution is an induced subgraph s of G containing 
exactly one node from each cluster. For each component 
(node) x the values f1(x), f2(x), …, fr(x) are known and 
likewise for each interface (edge) (x, y).  

Let F be an objective of interest (one of F1, F2, …, Fr) for 
the above CSP instance Let S(E) denote the set of feasible 
solutions and S*(E) the set of optimal solution over the edge 
set E for the objective function F. We introduce the quantities  

 

 
 

If  then the optimal value of objective function 
 remains unchanged under the additional constraint that 

 must occur in an optimal solution. We now define  
 

 
  

 We observe that  is the union of edge sets of all optimal 
solutions of F. Let  be the graph with edge set  and node 
set  consisting of end nodes of edges in . Then  is also 
a clustered graph with p clusters. We further note that  is 
completely determined by its edge set  so it suffices to 
consider  only. 
 The next theorem shows that for any objective F the set of 
optimal solutions over E is equal to the set of feasible 
solutions over E *.  
 
Theorem 1 For a given objective F we have . 
 

Proof. Suppose an optimal solution  contains an 
edge  with . Then  and the 
solution s* can be improved by replacing the edge  with 

a better alternative. This contradicts the optimality of s*. Thus 
s* only contains edges from E*.  

 Conversely assume that a feasible solution  
contains an edge . Then  and so . 
This is true for all edges of s. Therefore .  

 Volgenant [20] proved the directed edge version of 
Theorem 1 on the same lines.  Based on this result he 
proposed an iterative scheme for solving LMO instances. 
Volgenant’s scheme can be adapted to solve CSP as follows: 
 
Procedure: Lex CSP  

Initialization     
 Iteration   
   determine Ek

* and S*(Ek) 
 Termination If  and   
   then go to Iteration 
  else the CSP instance has been solved. 

 
 It must be noted that the objectives should be arranged in 

ascending order of priority with Fr being the most important. 
The procedure starts with the edge set  and successively 
reduces it ( ) until either all 
objectives are optimized  or there is only one solution 
left .  
  
B. Optimizing Individual Objectives   

Every iteration of the above procedure corresponds to 
maximizing or minimizing a single objective  over an 
undirected clustered graph  with node clusters 

. We can formulate this single objective 
optimization problem as a {0, 1}-integer linear program (ILP) 
by introducing the variables 

 

 
 

 
 
 The linear programing relaxation of the resulting ILP can 

be solved by a suitable branch and bound algorithm. 
 

V. COMPUTATIONAL COMPLEXITY AND NP-HARDNESS 
 

The run time complexity of Lex CSP procedure developed 
in Section III depends on how fast the quantities  and the 
edge set Ek

* can be determined during an iteration. 
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 Using the notation of [20] let  be the time to solve 
a single objective CSP on n nodes and m edges. Given an 
edge  we can calculate   by solving the single 
objective CSP under the restriction that  must appear in 
an optimal solution. The restricted problem can be solved in 
time  as two nodes and one edge have been 
fixed. If the optimal objective value of the restricted problem 
is the same as the original problem then ; 
otherwise . Hence the set Ek

* can be determined 
in time . For most practical 
applications the complexity is dominated by the term 

. The running time of Lex CSP is therefore 
 where r is the number of objectives.  

 
A. The Case of Serial Interfaces 

The run time  strongly depends on the nature of 
component interfaces; and also on whether the objective is 
being maximized or minimized. An important special case of 
CSP occurs when the components are connected by serial 
interfaces [8] (see Fig.2.).  

 
Fig. 2. Component selection problem with serial interfaces 

 
Under this assumption the single objective minimization 

CSP reduces to a variant of all pairs shortest path problem 
that can be solved by a Floyd-Warshall type algorithm in time 

. Thus if all objectives are to be minimized, 
the Lex CSP procedure solves the multi-objective CSP in 
time at most . 

The single objective maximization CSP is much harder to 
solve as it is equivalent to the all pairs longest path problem 
which is known to be NP-hard. 

Therefore we conclude that the multi-objective 
minimization CSP can be solved in polynomial time if the 
components are connected through serial interfaces; while the 
corresponding maximization CSP is NP-hard.  

VI. CONCLUDING REMARKS 
 

In this paper, we have presented a new technique for 
component selection that guides system analysts through a 
process of identifying suitable components that optimize one 
or more nonfunctional attributes of a CBS. We formulate 
component selection as a lexicographic multi-objective 
optimization problem, with an aim to optimize nonfunctional 
objectives, and present an efficient solution scheme. The 
proposed model guides selection by identifying components 
that will collectively achieve the best tradeoff among the 
metrics desired for the system. This technique results in a 
quality management method that can alleviate concerns 
regarding uncertainty in the cost and quality of a component-
based system. The complexity of component selection 
problem has also been examined extensively.  

In future, there is a need to have an integrated 
requirements analysis and component selection process that 
analyzes both functional and nonfunctional system 
requirements and extends the presented technique to select 
optimal set of components. We also plan to conduct an 
empirical study to better understand the benefits and 
limitations of our component selection process for a CBS. 
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