
Unit 20 1

File IO

• Binary Files

• Reading and Writing Binary Files

• Writing Objects to files

• Reading Objects from files

Unit 20 2

Binary Files

• Files that are designed to be read by programs and that consist
of a sequence of binary digits are called binary files

• Binary files store data in the same format used by computer
memory to store the values of variables
– No conversion needs to be performed when a value is stored or

retrieved from a binary file

• Java binary files, unlike other binary language files, are
portable
– A binary file created by a Java program can be moved from one

computer to another
– These files can then be read by a Java program, but only by a Java

program

Unit 20 3

Writing to a Binary File

• The class ObjectOutputStream is a stream class that can be used to
write to a binary file
– An object of this class has methods to write strings, values of primitive types,

and objects to a binary file

• An ObjectOutputStream object is created and connected
to a binary file as follows:

ObjectOutputStream outputStreamName = new
ObjectOutputStream(new
FileOutputStream(FileName));

Unit 20 4

Writing to a Binary File (continued)

• After opening the file, ObjectOutputStream
methods can be used to write to the file
– Methods used to output primitive values include

writeInt, writeDouble, writeChar, and
writeBoolean

• UTF is an encoding scheme used to encode Unicode
characters that favors the ASCII character set
– The method writeUTF can be used to output values of

type String

• The stream should always be closed after writing

Unit 20 5

Example 1

1. import java.io.*;
2. public class BinaryFiles
3. {
4. public static void main(String args[])
5. {
6. try{
7. ObjectOutputStream outputStreamName = new
8. ObjectOutputStream(new

FileOutputStream("output.txt"));
9. int i = 45; double j = 3.4; char k = 'a';
10. outputStreamName.writeInt(i);
11. outputStreamName.writeDouble(j);
12. outputStreamName.writeChar(k);
13. outputStreamName.close();
14. }catch(IOException e){}
15. }}

File data if opened
through any editor

¬í � �w -@
333333 a

Unit 20 6

Reading from a Binary File

• The class ObjectInputStream is a stream class
that can be used to read from a binary file
– An object of this class has methods to read strings,

values of primitive types, and objects from a
binary file

• An ObjectInputStream object is created and
connected to a binary file as follows:
ObjectInputStream inStreamName = new

ObjectInputStream(new
FileInputStream(FileName));

Unit 20 7

Reading From a Binary File (continued)

• After opening the file, ObjectInputStream
methods can be used to read to the file
– Methods used to input primitive values include

readInt, readDouble, readChar, and
readBoolean

– The method readUTF is used to input values of type
String

• If the file contains multiple types, each item type
must be read in exactly the same order it was written
to the file

• The stream should be closed after reading

Unit 20 8

Example 2

1. public class BinaryFiles
2. {
3. public static void main(String args[])
4. {
5. try{
6. ObjectInputStream inStreamName = new
7. ObjectInputStream(new
8. FileInputStream("output.txt"));
9. int i = inStreamName.readInt();
10. double j = inStreamName.readDouble();
11. char k = inStreamName.readChar();
12. System.out.println(i+" "+ j+" "+k);
13. }catch(IOException e){}
14. }}

Output:
45 3.4 a

Unit 20 9

Checking for the End of a Binary File

• All of the ObjectInputStream methods that read from a
binary file throw an EOFException when trying to read
beyond the end of a file
– This can be used to end a loop that reads all the data in a file

• Note that different file-reading methods check for the end of
a file in different ways
– Testing for the end of a file in the wrong way can cause a program to

go into an infinite loop or terminate abnormally

Unit 20 10

Objects IO to Binary File

• Objects can also be input and output from a binary file
– Use the writeObject method of the class
ObjectOutputStream to write an object to a binary file

– Use the readObject method of the class
ObjectInputStream to read an object from a binary
file

– In order to use the value returned by readObject as an
object of a class, it must be type cast first:

SomeClass someObject =
(SomeClass)objectInputStream.readObject();

Unit 20 11

Object IO to Binary Files

• In addition, the class of the object being read or
written must implement the Serializable
interface

• In order to make a class serializable, simply add
implements Serializable to the heading of
the class definition
public class SomeClass implements Serializable

• When a serializable class has instance variables of a
class type, then all those classes must be serializable
also
– A class is not serializable unless the classes for all instance

variables are also serializable for all levels of instance
variables within classes

Unit 20 12

Example

• A simple Student Class
1. class Student implements Serializable
2. {
3. private String Name;
4. private int Age;
5. private String ID;
6. public Student(String Name, int Age, String ID)
7. {
8. this.Name = Name;
9. this.Age = Age;
10. this.ID = ID;
11. }
12. public String toString()
13. {
14. return Name + ":" + ID+":"+Age;
15. }
16. }

Unit 20 13

Write Object to Binary File

1. public class BinaryFiles
2. {
3. public static void main(String args[])
4. {
5. try{
6. ObjectOutputStream outputStreamName = new
7. ObjectOutputStream(new

FileOutputStream("output.txt"));
8. Student s = new Student("Ahmed",21,"232323");
9. outputStreamName.writeObject(s);
10. outputStreamName.close();
11. }catch(IOException e){}
12. }}

Unit 20 14

Reading Objects

1. public class BinaryFiles
2. {
3. public static void main(String args[])
4. {
5. try{
6. ObjectInputStream inStreamName = new
7. ObjectInputStream(new
8. FileInputStream("output.txt"));
9. Student s = (Student) inStreamName.readObject();
10. System.out.println(s);
11. }catch(IOException e){}
12. catch(ClassNotFoundException e){}
13. }}

Output:
Ahmed:232323:12

