
Unit 16 1

Algorithms and Problem Solving

• Introduction

• What is an Algorithm?

• Algorithm Properties

• Example

• Exercises

Unit 16 2

What is an Algorithm?

What is an Algorithm?

• An algorithm is a precisely defined and ordered sequence of instructions that is
guaranteed to solve a specific problem.

• The algorithm must be general, that is, it should solve the problem for all possible
input sets to the problem.

• If there is a particular output for an input, we say that the algorithm can be applied
to this input and process it to give the corresponding output.

• The word “algorithm” is derived from the name of Muhammad ibn Musa-al-
Khwarizmi, a Muslim mathematician whose works introduced algebraic concepts.

Unit 16 3

Properties of Algorithms

Properties of Algorithm
• An algorithm should have the following properties:

– No ambiguity in any instruction
– No ambiguity which instruction is executed next
– Finite number of instructions
– Execution must halt and produce a result

Properties of Algorithm
• No ambiguity in any instruction: The instructions in an algorithm must be precisely

defined, so that any person or machine implementing the instructions must have no
difficulty in implementing them. For example, an instruction: “Adjust the
temperature to suitable level” is ambiguous and not precisely defined.

Unit 16 4

Properties of an Algorithm – Contd.

– No ambiguity which instruction is executed next: The order in which
instructions in algorithm must be executed should also be well defined and not
ambiguous. Again, we can say that the ordering should be such that any person
or machine implementing the algorithm must have no difficulty in
implementing them.

– Finite number of instructions: The number of instructions in an algorithm must
be finite so that implementation by hand or by machine takes a finite amount of
time.

– Execution must halt and produce a result: Finally, an algorithm must halt and
produce an output. Procedures that loop on forever on their inputs are not
algorithms in the strict sense of the term.

Unit 16 5

Representation of Algorithms

• Pseudocode (Pseudo = not real; false, Code = Program fragment) is a generic way
of describing an algorithm using the conventions of programming languages,
without using language-specific syntax.

• Pseudocode generally does not actually use the syntax of any particular language

• There is no systematic standard form, although any particular writer will generally
borrow the appearance of a particular language.

• Details not relevant to the algorithm (such as memory management code) are
usually omitted.

• The programming language will be augmented with natural language where
convenient (for example, for trivial operations such as swapping two variables).

Unit 16 6

Flow Charts

• Another way to represent algorithms is by using flowcharts.
• Flowcharts can be thought of as a graphical form of pseudocode.
• A flowchart (also spelled flow-chart and flow chart) is a schematic representation

of a process.
• Generally the start point, end points, inputs, outputs, possible paths and the

decisions that lead to these possible paths are included.
• Various flowchart boxes are shown below:

Decision
Begin/End

Data
Initialization

Action

Connector

Unit 16 7

Example 1

• Develop an algorithm to find the average of a list of student scores.
• Solution:
• The problem statement doesn’t specify the number of students, so we assume that a

sentinel value of -1 for score indicates the end-of-input. The algorithm is
straightforward.

• We keep inputting the score of each student.
• For each valid score entered we increment the variable count indicating the number

of students.
• For each valid score entered, we add the score to another variable called sum.
• If a score is entered with a value of -1, it indicates the end of input so we stop

inputting further scores.
• The average is equal to total/count.
• But what happens if the user didn’t enter any valid score. For example his first

entered value is -1?
• In that case if calculate total/count, it will lead to a division by zero error.
• So we say that if count is equal to zero, then the average is also zero.

Unit 16 8

The Pseudocode version

• The algorithm is straightforward:
1. Initialize score, total, count and average to zero.

2. Input student score
3. If score = -1 then go to step 7.
4. Add score to total
5. Increment count by 1.
6. Go to step 2.

7. If count ≠ 0 average = total/count.
8. Output average.

Unit 16 9

Example 1 – Contd.

• The algorithm appearing in the previous slide was in pseudo-code that was informal. A
flowchart version is shown below:

Start

score = 0, total = 0,
count = 0, average = 0

Input score

score = -1 ?

score = score + total

count = count + 1

count = 0 ?

Average = total/count

Output average

End

No

Yes

No

Yes

Unit 16 10

Example 1 - Conversion to Java Program

Below we show the Java program corresponding to Example 1. Observe the modifications made
to the pseudocode.

import java.io.*;
public class Sentinel
{

public static void main(String[] args) throws java.io.IOException
{

BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));
double total = 0, avg = 0;
int score = 0, count = 0;
System.out.print("Enter the score (or -1 to Quit): ");
score = Integer.parseInt(stdin.readLine());
while (score != -1)
{

total += score;
count += 1;
System.out.print("Enter the score (or -1 to Quit): ");
score=Integer.parseInt(stdin.readLine());

}
if (count != 0) avg = total/count;
System.out.println("Average Grade = "+avg);

}
}

Unit 16 11

Exercises

1. Develop an algorithm to check if a given integer is a perfect square or not. Give
both the pseudocode version and the flowchart version. Convert your
pseudocode into a Java program.

2. Develop an algorithm to display all prime numbers from 2 to 100. Give both the
pseudocode version and the flowchart version. Convert your pseudocode into a
Java program.

3. Develop an algorithm to find the maximum and minimum value from a list of
integers. Give both the pseudocode version and the flowchart version. Convert
your pseudocode into a Java program.

