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What is a Minimum Spanning Tree.
• Let G = (V, E) be a simple, connected, undirected graph that is not 

edge-weighted.

• A spanning tree of G is a free tree (i.e., a tree with no root) with | V | - 1 
edges that connects all the vertices of the graph.

• Thus a minimum spanning tree for G is a graph, T = (V’, E’) with the 
following properties:

V’ = V
T is connected
T is acyclic.

• A spanning tree is called a tree because every acyclic undirected 
graph can be viewed as a general, unordered tree. Because the edges 
are undirected, any vertex may be chosen to serve as the root of the 
tree.



Constructing Minimum Spanning Trees
• Any traversal of a connected, undirected graph 

visits all the vertices in that graph. The set of 
edges which are traversed during a traversal 
forms a spanning tree.

• For example, Fig:(b) shows the spanning tree 
obtained from a breadth-first traversal starting at 
vertex b.  

• Similarly, Fig:(c) shows the spanning tree 
obtained from a depth-first traversal starting at 
vertex c.  

(a) Graph G

(b) Breadth-first 
spanning tree of 
G rooted at b

(c) Depth-first 
spanning tree of 
G rooted at c



What is a Minimum-Cost Spanning Tree
• For an edge-weighted , connected, undirected graph, G, the total 

cost of G is the sum of the weights on all its edges.
• A minimum-cost spanning tree for G is a minimum spanning tree of 

G that has the least total cost.
• Example: The graph

Has 16 spanning trees. Some are:

The graph has two minimum-cost spanning trees, each with a cost of 6:



Applications of Minimum-Cost Spanning Trees

Minimum-cost spanning trees have many applications. Some are:
• Building cable networks that join n locations with minimum cost.
• Building a road network that joins n cities with minimum cost.
• Obtaining an independent set of circuit equations for an electrical 

network.
• In pattern recognition minimal spanning trees can be used to find noisy 

pixels.



Prim’s Algorithm
• Prim’s algorithm finds a minimum cost spanning tree by selecting 

edges from the graph one-by-one as follows:
• It starts with a tree, T, consisting of the starting vertex, x.
• Then, it adds the shortest edge emanating from x that connects T to 

the rest of the graph.
• It then moves to the added vertex and repeats the process.

Consider a graph G=(V, E);
Let T be a tree consisting of only the starting vertex x;
while (T has fewer than IVI vertices)
{

find a smallest edge connecting T to G-T;
add it to T;

}



Example
Trace Prim’s algorithm starting at vertex   a:

The resulting minimum-cost spanning tree is:



Implementation of Prim’s Algorithm.
• Prims algorithn can be implememted similar to the Dijskra’s

algorithm as shown below:
public static Graph primsAlgorithm(Graph g, Vertex start){

int n = g.getNumberOfVertices();
Entry table[] = new Entry[n];
for(int v = 0; v < n; v++)

table[v] = new Entry();

table[g.getIndex(start)].distance = 0;
PriorityQueue queue = new BinaryHeap(g.getNumberOfEdges());
queue.enqueue(new Association(new Integer(0), start));
while(!queue.isEmpty()) {

Association association = (Association)queue.dequeueMin();
Vertex v1 = (Vertex) association.getValue();
int n1 = g.getIndex(v1);
if(!table[n1].known){

table[n1].known = true;
Iterator p = v1.getEmanatingEdges();
while (p.hasNext()){

Edge edge = (Edge) p.next();
Vertex v2 = edge.getMate(v1);
int n2 = g.getIndex(v2);
Integer weight = (Integer) edge.getWeight();
int d = weight.intValue();



Implementation of Prim’s Algorithm  Cont'd
if(!table[n2].known && table[n2].distance > d){

table[n2].distance = d; table[n2].predecessor = v1;
queue.enqueue(new Association(new Integer(d), v2));

}
}

}
}
GraphAsLists result = new GraphAsLists(false);
Iterator it = g.getVertices();
while (it.hasNext()){

Vertex v = (Vertex) it.next();
result.addVertex(v.getLabel());

}
it = g.getVertices();
while (it.hasNext()){

Vertex v = (Vertex) it.next();
if (v != start){

int index = g.getIndex(v);
String from = v.getLabel();
String to = table[index].predecessor.getLabel();
result.addEdge(from, to, new Integer(table[index].distance));

}
}
return result;

}



Kruskal's Algorithm.
• Kruskal’s algorithm also finds the minimum cost 

spanning tree of a graph by adding  edges one-by-one.

enqueue edges of G in a queue in increasing order of cost.
T = φ ;
while(queue is not empty){

dequeue an edge e;
if(e does not create a cycle with edges in T)

add e to T;
}
return T;



Example for Kruskal’s Algorithm.
Trace Kruskal's algorithm in finding a minimum-cost spanning tree for the 
undirected, weighted graph given below:

The minimum cost is: 24



Implementation of Kruskal's Algorithm
public static Graph kruskalsAlgorithm(Graph g){

Graph result = new GraphAsLists(false);
Iterator it = g.getVertices();
while (it.hasNext()){

Vertex v = (Vertex)it.next();
result.addVertex(v.getLabel());

}
PriorityQueue queue = new BinaryHeap(g.getNumberOfEdges());
it = g.getEdges();
while(it.hasNext()){

Edge e = (Edge) it.next();
if (e.getWeight()==null)

throw new IllegalArgumentException("Graph is not weighted");
queue.enqueue(e);

}

while (!queue.isEmpty()){
Edge e = (Edge) queue.dequeueMin();
String from = e.getFromVertex().getLabel();
String to = e.getToVertex().getLabel();
if (!result.isReachable(from, to))

result.addEdge(from,to,e.getWeight());
}
return result;

}

adds an edge only, if it 
does not create a cycle



Implementation of Kruskal's Algorithm – Cont’d
public abstract class AbstractGraph implements Graph {

public boolean isReachable(String from, String to){
Vertex fromVertex = getVertex(from);
Vertex toVertex = getVertex(to);
if (fromVertex == null || toVertex==null)

throw new IllegalArgumentException("Vertex not in the graph");
PathVisitor visitor = new PathVisitor(toVertex);
this.preorderDepthFirstTraversal(visitor, fromVertex);
return visitor.isReached();

}

private class PathVisitor implements Visitor {
boolean reached = false;
Vertex target;
PathVisitor(Vertex t){target = t;}

public void visit(Object obj){
Vertex v = (Vertex) obj;
if (v.equals(target)) reached = true;

}
public boolean isDone(){return reached;}
boolean isReached(){return reached;}

}
}



Prim’s and Kruskal’s Algorithms
Note: It is not necessary that Prim's and Kruskal's algorithm generate the same minimum-cost 
spanning tree.
For example for the graph:

Kruskal's algorithm (that imposes an ordering on edges with equal weights) results 
in the following minimum cost spanning tree:

The same tree is generated by Prim's algorithm if the start vertex is any of: A, B, or 
D; however if the start vertex is C the minimum cost spanning tree is:



Review Questions

GB

1. Find the breadth-first spanning tree and depth-first spanning tree of the  
graph GA shown above.

2. For the graph GB  shown above, trace the execution of Prim's algorithm as it 
finds the minimum-cost spanning tree of the graph starting from vertex a.

3. Repeat question 2 above using Kruskal's algorithm.


