Shortest Path Algorithm

- What is the Shortest Path Problem?
- Is the shortest path problem well defined?
- The Dijkstra's Algorithm for Shortest Path Problem.
- Implementation Dijkstra's Algorithm
What is the shortest path problem?

• In an edge-weighted graph, the weight of an edge measures the cost of traveling that edge.

• For example, in a graph representing a network of airports, the weights could represent: distance, cost or time.

• Such a graph could be used to answer any of the following:
 – What is the fastest way to get from A to B?
 – Which route from A to B is the least expensive?
 – What is the shortest possible distance from A to B?

• Each of these questions is an instance of the same problem: The shortest path problem!
Is the shortest path problem well defined?

- If all the edges in a graph have non-negative weights, then it is possible to find the shortest path from any two vertices.

- For example, in the figure below, the shortest path from B to F is \{ B, A, C, E, F \} with a total cost of nine.

- Thus, the problem is well defined for a graph that contains non-negative weights.
Is the shortest path problem well defined? - Cont'd

- Things get difficult for a graph with negative weights.

- For example, the path D, A, C, E, F costs 4 even though the edge
 (D, A) costs 5 -- the longer the less costly.

- The problem gets even worse if the graph has a negative cost cycle.
 e.g. {D, A, C, D}

- A solution can be found even for negative-weight graphs but not for
 graphs involving negative cost cycles.

\[
\{D, A, C, D, A, C, E, F\} = 2 \\
\{D, A, C, D, A, C, D, A, C, E, F\} = 0
\]
The Dijkstra's Algorithm

• Dijkstra's algorithm solves the single-source shortest path problem for a non-negative weights graph.

• It finds the shortest path from an initial vertex, say s, to all the other vertices.
The Dijkstra's Algorithm Cont'd

// Let V be the set of all vertices in G, and s the start vertex.
for (each vertex v) {
 currentDistance(s-v) = ∞;
 predecessor(v) = undefined;
}
currentDistance(s-s) = 0;
T = V;
while (T ≠ ∅) {
 v = a vertex in T with minimal currentDistance from s;
 T = T – {v};
 for (each vertex u adjacent to v and in T) {
 if (currentDistance(s-u) > currentDistance(s-v) + weight(edge(vu))) {
 currentDistance(s-u) = currentDistance(s-v) + weight(edge(vu));
 predecessor(u) = v;
 }
 }
}

For each vertex, the algorithm keeps track of its current distance from the starting vertex and the predecessor on the current path.
Example

Tracing Dijkstra’s algorithm starting at vertex B:

![Graph diagram]

<table>
<thead>
<tr>
<th>Pass: initially</th>
<th>initially</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Shortest distance</th>
<th>Predecessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active vertex:</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>∞</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>8</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>11</td>
<td>9</td>
<td></td>
<td>9</td>
<td>E</td>
</tr>
</tbody>
</table>

The resulting vertex-weighted graph is:

![Graph diagram]
Data structures required

- The implementation of Dijkstra's algorithm uses the Entry structure, which contains the following three fields:
 - **know**: a boolean variable indicating whether the shortest path to \(v \) is known, initially false for all vertices.
 - **distance**: the shortest known distance from \(s \) to \(v \), initially infinity for all vertices except that of \(s \) which is 0.
 - **predecessor**: the predecessor of \(v \) on the path from \(s \) to \(v \), initially unknown for all vertices.

```java
public class Algorithms{
    static final class Entry{
        boolean known;
        int distance;
        Vertex predecessor;

        Entry(){
            known = false;
            distance = Integer.MAX_VALUE;
            predecessor = null;
        }
    }
}
```
Implementation of Dijkstra's Algorithm

• The dijkstrasAlgorithm method shown below takes two arguments, a directed graph and the starting vertex.
• The method returns a vertex-weighted Digraph from which the shortest path from s to any vertex can be found.
• Since in each pass, the vertex with the smallest known distance is chosen, a minimum priority queue is used to store the vertices.

```java
public static Graph dijkstrasAlgorithm(Graph g, Vertex start){
    int n = g.getNumberOfVertices();
    Entry table[] = new Entry[n];
    for(int v = 0; v < n; v++)
        table[v] = new Entry();

    table[g.getIndex(start)].distance = 0;
    PriorityQueue queue = new BinaryHeap(
        g.getNumberOfEdges());
    queue.enqueue(new Association(new Integer(0), start));
```
while(!queue.isEmpty()) {
 Association association = (Association)queue.dequeueMin();
 Vertex v1 = (Vertex) association.getValue();
 int n1 = g.getIndex(v1);
 if(!table[n1].known){
 table[n1].known = true;
 Iterator p = v1.getEmanatingEdges();
 while (p.hasNext()){
 Edge edge = (Edge) p.next();
 Vertex v2 = edge.getMate(v1);
 int n2 = g.getIndex(v2);
 Integer weight = (Integer) edge.getWeight();
 int d = table[n1].distance + weight.intValue();
 if(table[n2].distance > d){
 table[n2].distance = d;
 table[n2].predecessor = v1;
 queue.enqueue(new Association(d, v2));
 }
 }
 }
}
Graph result = new GraphAsLists(true); // Result is Digraph
Iterator it = g.getVertices();
while (it.hasNext()){
 Vertex v = (Vertex) it.next();
 result.addVertex(v.getLabel(),
 new Integer(table[g.getIndex(v)].distance));
}

it = g.getVertices();
while (it.hasNext()){
 Vertex v = (Vertex) it.next();
 if (v != start){
 String from = v.getLabel();
 String to = table[g.getIndex(v)].predecessor.getLabel();
 result.addEdge(from, to);
 }
}
return result;
Review Questions

• Use the graph Gc shown above to trace the execution of Dijkstra's algorithm as it solves the shortest path problem starting from vertex a.

• Dijkstra's algorithm works as long as there are no negative edge weights. Given a graph that contains negative edge weights, we might be tempted to eliminate the negative weights by adding a constant weight to all of the edges. Explain why this does not work.

• Dijkstra's algorithm can be modified to deal with negative edge weights (but not negative cost cycles) by eliminating the known flag and by inserting a vertex back into the queue every time its tentative distance decreases. Implement this modified algorithm.