Testing for Connectedness and Cycles

• Connectedness of an Undirected Graph

• Implementation of Connectedness detection Algorithm.

• Implementation of Strong Connectedness Algorithm.

• Cycles in a Directed Graph.

• Implementation of a Cycle detection Algorithm.

• Review Questions.
Connectedness of an Undirected Graph

- An undirected graph $G = (V, E)$ is connected if there is a path between every pair of vertices.

- Although the figure below appears to be two graphs, it is actually a single graph.

- Clearly, G is not connected. e.g. no path between A and D.

- G consists of two unconnected parts, each of which is a connected sub-graph --- connected components.

$V = \{A, B, C, D, E, F\}$

$E = \{\{A, B\}, \{A, C\}, \{B, C\}, \{D, E\}, \{E, F\}\}$
Implementation of Connectedness Algorithm

• A simple way to test for connectedness in an undirected graph is to use either depth-first or breadth-first traversal - Only if all the vertices are visited is the graph connected. The algorithm uses the following visitor:

```java
public class CountingVisitor extends AbstractVisitor {
    protected int count;
    public int getCount(){ return count;}
    public void visit(Object obj) {count++;}
}
```

• Using the CountingVisitor, the isConnected method is implemented as follows:

```java
public boolean isConnected() {
    CountingVisitor visitor = new CountingVisitor();
    Iterator i = getVertices();
    Vertex start = (Vertex) i.next();
    breadthFirstTraversal(visitor, start);
    return visitor.getCount() == numberOfVertices;
}
```
Connectedness of a Directed Graph

• A directed graph \(G = (V, E) \) is strongly connected if there is a directed path between every pair of vertices.

• Is the directed graph below connected?
 – \(G \) is not strongly connected. No path between any of the vertices in \(\{D, E, F\} \)
 – However, \(G \) is weakly connected since the underlying undirected graph is connected.

\[V = \{A, B, C, D, E, F\} \]
\[E = \{(A, B), (B, C), (C, A), (B, E), (D, E), (E, F), (F, D)\} \]
Implementation of Strong Connectedness Algorithm

• A simple way to test for strong connectedness is to use $|V|$ traversals - The graph is strongly connected if all the vertices are visited in each traversal.

```java
public boolean isStronglyConnected() {
    if (!this.isDirected())
        throw new InvalidOperationException(
            "Invalid for Undirected Graph");
    Iterator it = getVertices();
    while(it.hasNext()) {
        CountingVisitor visitor = new CountingVisitor();
        breadthFirstTraversal(visitor, (Vertex) it.next());
        if(visitor.getCount() != numberOfVertices)
            return false;
    }
    return true;
}
```

• Implementation of weak connectedness is done in the Lab.
Cycles in a Directed Graph

- An easy way to detect the presence of cycles in a directed graph is to attempt a topological order traversal.
 - This algorithm visits all the vertices of a directed graph if the graph has no cycles.
- In the following graph, after A is visited and removed, all the remaining vertices have in-degree of one.
- Thus, a topological order traversal cannot complete. This is because of the presence of the cycle \{ B, C, D, B \}.

```java
public boolean isCyclic() {
    CountingVisitor visitor = new CountingVisitor();
    topologicalOrderTraversal(visitor);
    return visitor.getCount() != numberOfVertices;
}
```
Review Questions

1. Every tree is a directed, acyclic graph (DAG), but there exist DAGs that are not trees.
 a) How can we tell whether a given DAG is a tree?
 b) Devise an algorithm to test whether a given DAG is a tree.

2. Consider an acyclic, connected, undirected graph G that has n vertices. How many edges does G have?

3. In general, an undirected graph contains one or more connected components.
 a) Devise an algorithm that counts the number of connected components in a graph.
 b) Devise an algorithm that labels the vertices of a graph in such a way that all the vertices in a given connected component get the same label and vertices in different connected components get different labels.

4. Devise an algorithm that takes as input a graph, and a pair of vertices, v and w, and determines whether w is reachable from v.