Introduction to Graphs

• What is a Graph?

• Some Example applications of Graphs.

• Graph Terminologies.

• Representation of Graphs.
 – Adjacency Matrix.
 – Adjacency Lists.
 – Simple Lists

• Review Questions.
What is a Graph?

- Graphs are Generalization of Trees.

- A simple graph $G = (V, E)$ consists of a non-empty set V, whose members are called the vertices of G, and a set E of pairs of distinct vertices from V, called the edges of G.

[Diagram showing undirected, directed (Digraph), and weighted graphs]
Some Example Applications of Graph

• Finding the least congested route between two phones, given connections between switching stations.

• Determining if there is a way to get from one page to another, just by following links.

• Finding the shortest path from one city to another.

• As a traveling sales-person, finding the cheapest path that passes through all the cities that the sales person must visit.

• Determining an ordering of courses so that prerequisite courses are always taken first.
Graphs Terminologies

- **Adjacent Vertices:** there is a connecting edge.

- **A Path:** A sequence of adjacent vertices.

- **A Cycle:** A path in which the last and first vertices are adjacent.

- **Connected graph:** There is a path from any vertex to every other vertex.
More Graph Terminologies

- Path and cycles in a digraph: must move in the direction specified by the arrow.

- Connectedness in a digraph: strong and weak.

- Strongly Connected: If connected as a digraph - following the arrows.

- Weakly connected: If the underlying undirected graph is connected (i.e. ignoring the arrows).

Directed Cycle

Strongly Connected

Weakly Connected
Further Graph Terminologies

• Emanate: an edge $e = (v, w)$ is said to emanate from v.
 – $A(v)$ denotes the set of all edges emanating from v.

• Incident: an edge $e = (v, w)$ is said to be incident to w.
 – $I(w)$ denote the set of all edges incident to w.

• Out-degree: number of edges emanating from v -- $|A(v)|$

• In-degree: number of edges incident to w -- $|I(w)|$.

![Directed Graph](image1)

![Undirected Graph](image2)
Graph Representations

• For vertices:
 – an array or a linked list can be used

• For edges:
 – Adjacency Matrix (Two-dimensional array)
 – Adjacency List (One-dimensional array of linked lists)
 – Linked List (one list only)
Adjacency Matrix Representation

- Adjacency Matrix uses a 2-D array of dimension $|V| \times |V|$ for edges. (For vertices, a 1-D array is used)

- The presence or absence of an edge, (v, w) is indicated by the entry in row v, column w of the matrix.

- For an unweighted graph, boolean values could be used.

- For a weighted graph, the actual weights are used.
Notes on Adjacency Matrix

- For undirected graph, the adjacency matrix is always symmetric.

- In a Simple Graph, all diagonal elements are zero (i.e. no edge from a vertex to itself).

- The space requirement of adjacency matrix is $O(n^2)$ - most of it wasted for a graph with few edges.

- However, entries in the matrix can be accessed directly.
Adjacency List Representation

- This involves representing the set of vertices adjacent to each vertex as a list. Thus, generating a set of lists.

- This can be implemented in different ways.
- Our representation:
 - Vertices as a one dimensional array
 - Edges as an array of linked list (the emanating edges of vertex 1 will be in the list of the first element, and so on, ...
Simple List Representation

- Vertices are represented as a 1-D array or a linked list
- Edges are represented as one linked list
 - Each edge contains the information about its two vertices
Review Questions

1. Consider the undirected graph G_A shown above. List the elements of V and E. Then, for each vertex v in V, do the following:
 1. Compute the in-degree of v
 2. Compute the out-degree of v
 3. List the elements of $A(v)$
 4. List the elements of $I(v)$.

2. Consider the undirected graph G_A shown above. Show how the graph is represented using adjacency matrix.
 Show how the graph is represented using adjacency lists.

3. Repeat Exercises 1 and 2 for the directed graph G_B shown above.