
Introduction to Data Compression
• What is Data Compression?

• Why Data Compression?

• How is Data Compression possible?

• Lossless and Lossy Data Compression

• Static, Adaptive, and Hybrid Compression

• Compression Utilities and Formats

• Run-length Encoding

• Static Huffman Coding

• The Prefix property



What is Data Compression?

Data compression is the representation of an 
information source (e.g. a data file, a speech 
signal, an image, or a video signal) as accurately 
as possible using the fewest number of bits.

Compressed data can only be understood if the decoding 
method is known by the receiver.



Why Data Compression?
• Data storage and transmission cost money. This cost increases with the 

amount of data available.

• This cost can be reduced by processing the data so that it takes less 
memory and less transmission time. 

• Disadvantage of  Data compression:
Compressed data must be decompressed to be viewed (or heard), thus 
extra processing is required. 

• The design of data compression schemes therefore involve trade-offs 
between various factors, including the degree of compression, the 
amount of distortion introduced (if using a lossy compression scheme), 
and the computational resources required to compress and uncompress 
the data.



How is data compression possible?

Compression is possible because information usually 
contains redundancies, or information that is often 
repeated.

Examples include reoccurring letters, numbers or pixels

File compression programs remove this redundancy.



Lossless and Lossy Compression Techniques
• Data compression techniques are broadly classified into 

lossless and lossy.

• Lossless techniques enable exact reconstruction of the 
original document from the compressed information.

• Exploit redundancy in data
• Applied to general data
• Examples: Run-length, Huffman,  LZ77, LZ78, and LZW

• Lossy compression - reduces a file by permanently 
eliminating certain redundant information

• Exploit redundancy and human perception
• Applied to audio, image, and video
• Examples: JPEG and MPEG 

• Lossy techniques usually achieve higher compression rates 
than lossless ones but the latter are more accurate.



Classification of Lossless Compression Techniques
• Lossless techniques are classified into static, adaptive (or dynamic), and 

hybrid.

• In a static method the mapping from the set of messages to the set of 
codewords is fixed before transmission begins, so that a given message is
represented by the same codeword every time it appears in the message being 
encoded. 

• Static coding requires two passes: one pass to compute probabilities (or 
frequencies) and determine the mapping, and a second pass to encode.

• Examples: Static Huffman Coding

• In an  adaptive method the mapping from the set of messages to the set of 
codewords changes over time. 

• All of the adaptive methods are one-pass methods; only one scan of the 
message is required. 

• Examples: LZ77, LZ78, LZW, and Adaptive Huffman Coding

• An algorithm may also be a hybrid, neither completely static nor completely 
dynamic.



Compression Utilities and Formats
• Compression tool examples:

winzip, pkzip, compress, gzip

• General compression formats:

.zip, .gz

• Common image compression formats:

JPEG, JPEG 2000,  BMP, GIF, PCX, PNG, TGA, TIFF, WMP

• Common audio (sound) compression formats:

MPEG-1 Layer III (known as MP3), RealAudio (RA, RAM, RP), AU, Vorbis, WMA, AIFF, 
WAVE, G.729a

• Common video (sound and image) compression formats:

MPEG-1, MPEG-2, MPEG-4, DivX, Quicktime (MOV), RealVideo (RM), Windows Media 
Video (WMV), Video for Windows (AVI), Flash video (FLV)



Run-length encoding
The following string: 

BBBBHHDDXXXXKKKKWWZZZZ
can be encoded more compactly by replacing each repeated string of characters by a single instance of 
the repeated character and a number that represents the number of times it is repeated: 

4B2H2D4X4K2W4Z
Here "4B" means four B's, and 2H means two H's, and so on. Compressing a string in this way is called
run-length encoding. 

As another example, consider the storage of a rectangular image. As a single color bitmapped image, it 
can be stored as: 

The rectangular image can be compressed with run-length encoding by counting identical bits as
follows: 

0, 40
0, 40
0,10 1,20 0,10
0,10 1,1 0,18 1,1 0,10
0,10 1,1 0,18 1,1 0,10
0,10 1,1 0,18 1,1 0,10
0,10 1,20 0,10
0,40

The first line says that the first line of the bitmap consists of 
40 0's. The third line says that the third line of the bitmap 
consists of 10 0's followed by 20 1's followed by 10 more 0's, 
and so on for the other lines 



Static Huffman Coding

• Static Huffman coding assigns variable length codes to symbols 
based on their frequency of occurrences in the given message. 
Low frequency symbols are encoded using many bits, and high 
frequency symbols are encoded using fewer bits.

• The message to be transmitted is first analyzed to find the 
relative frequencies of its constituent characters.

• The coding process generates a binary tree, the Huffman code 
tree, with branches labeled with bits (0 and 1).

• The Huffman tree (or the character codeword pairs) must be sent 
with the compressed information to enable the receiver decode 
the message. 



Static Huffman Coding Algorithm

Find the frequency of each character in the file to be compressed;

For each distinct character create a one-node binary tree  containing the character and its 
frequency as its priority;

Insert the one-node binary trees in a priority queue in increasing order of frequency;

while (there are more than one tree in the priority queue) {
dequeue two trees t1 and t2;
Create a tree t that contains t1 as its left subtree and t2 as its right subtree;  // 1
priority (t) = priority(t1) + priority(t2);
insert t in its proper location in the priority queue;  // 2

}

Assign 0 and 1 weights to the edges of the resulting tree, such that the left and right edge 
of each node do not have the same weight;  // 3

Note: The Huffman code tree for a particular set of characters is not unique. 
(Steps 1, 2, and 3 may be done differently).



Static Huffman Coding example
Example: Information to be transmitted over the internet contains
the following characters with their associated frequencies:

Use Huffman technique to answer the following questions:

Build the Huffman code tree for the message.

Use the Huffman tree to find the codeword for each character.

If the data consists of only these characters, what is the total number of 
bits to be transmitted? What is the compression ratio?

Verify that your computed Huffman codewords satisfy the Prefix 
property.

tsonleaCharacter

53221845136545Frequency



Static Huffman Coding example (cont’d)



Static Huffman Coding example (cont’d)



Static Huffman Coding example (cont’d)



Static Huffman Coding example (cont’d)



Static Huffman Coding example (cont’d)

The sequence of zeros and ones that are the arcs in the path from the root to each leaf node are 
the desired codes:

tsonlea character

000100111111011010110Huffman
codeword



Static Huffman Coding example (cont’d)
If we assume the message consists of only the characters a,e,l,n,o,s,t then the 
number of bits for the compressed message will be 696: 

If  the message is sent uncompressed with 8-bit ASCII representation for the
characters, we have 261*8 = 2088 bits.

    



Static Huffman Coding example (cont’d)
Assuming that the number of character-codeword pairs and the pairs are included at the beginning of
the binary file containing the compressed message in the following format:

Number of bits for the transmitted file = bits(7) + bits(characters) + bits(codewords) + bits(compressed message)
= 3 +  (7*8) + 21 + 696 = 776

Compression ratio = bits for ASCII representation / number of bits transmitted
=   2088 / 776 = 2.69

Thus, the size of the transmitted file is 100 / 2.69 = 37% of the original ASCII file     

7 
a110
e10
l0110
n111
o0111
s010
t00
sequence of zeroes and ones for the compressed message

in binary (significant bits)

Characters are in 8-bit ASCII 
codes



The Prefix Property

Data encoded using Huffman coding is uniquely decodable. This is
because Huffman codes satisfy an important property called the prefix 
property:

In a given set of Huffman codewords, no codeword is a prefix of 
another Huffman codeword

For example, in a given set of Huffman codewords, 10 and 101 cannot 
simultaneously be valid Huffman codewords because the first is a prefix 
of the second.

We can see by inspection that the codewords we generated in the 
previous example are valid Huffman codewords.



The Prefix Property (cont’d)
To see why the prefix property is essential, consider the codewords given below
in which “e” is encoded with  110 which is a prefix of “f”

character a b c d e f

codeword 0 101 100 111 110 1100

The decoding of 11000100110 is ambiguous:

11000100110 =>   face

11000100110 =>   eaace



Encoding and decoding examples
Encode (compress) the message tenseas using the following codewords:

Answer: Replace each character with its codeword:  
001011101010110010

Decode (decompress) each of the following encoded messages, if possible, using the Huffman
codeword tree given below 0110011101000 and 11101110101011:

tsonlea character

000100111111011010110Huffman
codeword

(a)0110011101000 => lost

(b) 11101110101011
The decoding fails because the 
corresponding node for 11 is not a leaf

Answer: Decode a bit-stream by starting at the root and 
proceeding down the tree according to the bits in the message 
(0 = left, 1 = right).  When a leaf is encountered, output the 
character at that leaf and restart at the root .If a leaf cannot be 
reached, the bit-stream cannot be decoded.



Exercises

1. Using the Huffman tree constructed in this session, decode the 
following sequence of bits, if possible. Otherwise, where does the 
decoding fail?

10100010111010001000010011

2. Using the Huffman tree constructed in this session, write the bit 
sequences that encode the messages: 

test , state ,  telnet , notes

3. Mention one disadvantage of a lossless compression scheme and one 
disadvantage of a lossy compression scheme.

4. Write a Java program that implements the Huffman coding 
algorithm. 


