Analysis of Recursive Algorithms

• What is a recurrence relation?

• Forming Recurrence Relations

• Solving Recurrence Relations

• Analysis Of Recursive Factorial method

• Analysis Of Recursive Selection Sort

• Analysis Of Recursive Binary Search

• Analysis Of Recursive Towers of Hanoi Algorithm
What is a recurrence relation?

- A recurrence relation, $T(n)$, is a recursive function of integer variable n.
- Like all recursive functions, it has both recursive case and base case.
- Example:

$$T(n) = \begin{cases} a & \text{if } n = 1 \\ 2T(n/2) + bn + c & \text{if } n > 1 \end{cases}$$

- The portion of the definition that does not contain T is called the **base case** of the recurrence relation; the portion that contains T is called the **recurrent or recursive case**.
- Recurrence relations are useful for expressing the running times (i.e., the number of basic operations executed) of recursive algorithms.
Forming Recurrence Relations

• For a given recursive method, the base case and the recursive case of its recurrence relation correspond directly to the base case and the recursive case of the method.

• Example 1: Write the recurrence relation for the following method.

```java
public void f (int n) {
    if (n > 0) {
        System.out.println(n);
        f(n-1);
    }
}
```

• The base case is reached when \(n = 0 \). The method performs one comparison. Thus, the number of operations when \(n = 0 \), \(T(0) \), is some constant \(a \).

• When \(n > 0 \), the method performs two basic operations and then calls itself, using ONE recursive call, with a parameter \(n - 1 \).

• Therefore the recurrence relation is:

\[
T(0) = a \quad \text{for some constant } a \\
T(n) = b + T(n-1) \quad \text{for a constant } b
\]
Forming Recurrence Relations

• Example 2: Write the recurrence relation for the following method.

```java
public int g(int n) {
    if (n == 1)
        return 2;
    else
        return 3 * g(n / 2) + g(n / 2) + 5;
}
```

• The base case is reached when \(n = 1 \). The method performs one comparison and one return statement. Therefore, \(T(1) \), is constant \(c \).

• When \(n > 1 \), the method performs **TWO** recursive calls, each with the parameter \(n / 2 \), and some constant \# of basic operations.

• Hence, the recurrence relation is:

\[
T(1) = c \\
T(n) = b + 2T(n / 2)
\]
for some constant \(c \)
for a constant \(b \)
Solving Recurrence Relations

• To solve a recurrence relation $T(n)$ we need to derive a form of $T(n)$ that is not a recurrence relation. Such a form is called a closed form of the recurrence relation.

• There are four methods to solve recurrence relations that represent the running time of recursive methods:
 ▪ Iteration method (*unrolling and summing*)
 ▪ Substitution method
 ▪ Recursion tree method
 ▪ Master method

• In this course, we will only use the Iteration method.
Solving Recurrence Relations - Iteration method

- **Steps:**
 - Expand the recurrence
 - Express the expansion as a summation by plugging the recurrence back into itself until you see a pattern.
 - Evaluate the summation

- In evaluating the summation one or more of the following summation formulae may be used:

- **Arithmetic series:**
 \[\sum_{k=1}^{n} k = 1 + 2 + \ldots + n = \frac{n(n + 1)}{2} \]

- **Geometric Series:**
 \[\sum_{k=0}^{n} x^k = 1 + x + x^2 + \ldots + x^n = \frac{x^{n+1} - 1}{x - 1} \quad (x \neq 1) \]
 \[\sum_{k=0}^{n-1} x^k = \frac{x^n - 1}{x - 1} \quad (x \neq 1) \]

- **Special Cases of Geometric Series:**
 \[\sum_{k=0}^{n-1} 2^k = 2^n - 1 \]
 \[\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \quad \text{if } x < 1 \]
Solving Recurrence Relations - Iteration method

- Harmonic Series:
 \[\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \ldots + \frac{1}{n} \approx \ln n \]

- Others:
 \[\sum_{k=1}^{n} \lg k \approx n \lg n \]
 \[\sum_{k=0}^{n-1} c = cn. \]
 \[\sum_{k=0}^{n-1} \frac{1}{2^k} = 2 - \frac{1}{2^{n-1}} \]
 \[\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \]
 \[\sum_{k=0}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3} \]
Analysis Of Recursive Factorial method

- Example 1: Form and solve the recurrence relation for the running time of factorial method and hence determine its big-O complexity:

```java
long factorial (int n) {
    if (n == 0)
        return 1;
    else
        return n * factorial (n - 1);
}
```

\[
\begin{align*}
T(0) &= c \\
T(n) &= b + T(n - 1) \\
 &= b + b + T(n - 2) \\
 &= b + b + b + T(n - 3) \\
 & \cdots \\
 &= kb + T(n - k) \\
\end{align*}
\]

When \(k = n \), we have:

\[
\begin{align*}
T(n) &= nb + T(n - n) \\
 &= bn + T(0) \\
 &= bn + c.
\end{align*}
\]

Therefore method factorial is \(O(n) \).
Analysis Of Recursive Selection Sort

```java
public static void selectionSort(int[] x) {
    selectionSort(x, x.length - 1);
}

private static void selectionSort(int[] x, int n) {
    int minPos;
    if (n > 0) {
        minPos = findMinPos(x, n);
        swap(x, minPos, n);
        selectionSort(x, n - 1);
    }
}

private static int findMinPos (int[] x, int n) {
    int k = n;
    for(int i = 0; i < n; i++)
        if(x[i] < x[k])  k = i;
    return k;
}

private static void swap(int[] x, int minPos, int n) {
    int temp=x[n]; x[n]=x[minPos]; x[minPos]=temp;
}
Analysis Of Recursive Selection Sort

- findMinPos is $O(n)$, and swap is $O(1)$, therefore the recurrence relation for the running time of the selectionSort method is:

$$T(0) = a$$

$$T(n) = T(n-1) + n + c \quad n > 0$$

$$= [T(n-2) + (n-1) + c] + n + c = T(n-2) + (n-1) + n + 2c$$

$$= [T(n-3) + (n-2) + c] + (n-1) + n + 2c = T(n-3) + (n-2) + (n-1) + n + 3c$$

$$= T(n-4) + (n-3) + (n-2) + (n-1) + n + 4c$$

$$= \ldots$$

$$= T(n-k) + (n-k + 1) + (n-k + 2) + \ldots + n + kc$$

When $k = n$, we have:

$$T(n) = T(0) + 1 + 2 + \ldots + n + nc$$

$$= a + \sum_{i=0}^{n} i + cn$$

$$= a + \left(\frac{n(n+1)}{2}\right) + cn$$

$$= \frac{n^2}{2} + (c + \frac{1}{2})n + a$$

Therefore, Recursive Selection Sort is $O(n^2)$
Analysis Of Recursive Binary Search

```
public int binarySearch (int target, int[] array,
 int low, int high) {
 if (low > high)
 return -1;
 else {
 int middle = (low + high)/2;
 if (array[middle] == target)
 return middle;
 else if(array[middle] < target)
 return binarySearch(target, array, middle + 1, high);
 else
 return binarySearch(target, array, low, middle - 1);
 }
}
```

- The recurrence relation for the running time of the method is:
  \[ T(1) = a \quad \text{if } n = 1 \quad \text{(one element array)} \]
  \[ T(n) = T(n / 2) + b \quad \text{if } n > 1 \]
Analysis Of Recursive Binary Search

Expanding:

\[ T(n) = T(n / 2) + b \]
\[ = [T(n / 4) + b] + b = T(n / 2^2) + 2b \]
\[ = [T(n / 8) + b] + 2b = T(n / 2^3) + 3b \]
\[ = \ldots \]
\[ = T(n / 2^k) + kb \]

When \( n / 2^k = 1 \) \( \rightarrow \) \( n = 2^k \) \( \rightarrow \) \( k = \log_2 n \), we have:

\[ T(n) = T(1) + b \log_2 n \]
\[ = a + b \log_2 n \]

Therefore, Recursive Binary Search is \( O(\log n) \)
The recurrence relation for the running time of the method `hanoi` is:

\[ T(n) = a \quad \text{if } n = 1 \]

\[ T(n) = 2T(n - 1) + b \quad \text{if } n > 1 \]
Analysis Of Recursive Towers of Hanoi Algorithm

Expanding:

\[ T(n) = 2T(n - 1) + b \]

\[ = 2[2T(n - 2) + b] + b = 2^2 T(n - 2) + 2b + b \]

\[ = 2^2 [2T(n - 3) + b] + 2b + b = 2^3 T(n - 3) + 2^2b + 2b + b \]

\[ = 2^3 [2T(n - 4) + b] + 2^2b + 2b + b = 2^4 T(n - 4) + 2^3 b + 2^2b + 2^1b + 2^0b \]

\[ = \ldots \ldots \]

\[ = 2^k T(n - k) + b[2^{k-1} + 2^{k-2} + \ldots + 2^1 + 2^0] \]

\[ = 2^k T(n - k) + b \sum_{i=0}^{k-1} 2^i \]

\[ = 2^k T(n - k) + b(2^k - 1) \]

When \( k = n - 1 \), we have:

\[ T(n) = 2^{n-1} T(1) + b(2^{n-1} - 1) \]

\[ = (a + b) 2^{n-1} - b \]

\[ = \left( \frac{a+b}{2} \right) 2^n - b \]

Therefore, The method \textit{hanoi} is \( O(2^n) \)