Complexity Analysis (Part II)

- Asymptotic Complexity

- *Big-O (asymptotic) Notation*

- Big-O Computation Rules

- Proving Big-O Complexity

- How to determine complexity of code structures
Asymptotic Complexity

• Finding the exact complexity, \(f(n) = \) number of basic operations, of an algorithm is difficult.

• We approximate \(f(n) \) by a function \(g(n) \) in a way that does not substantially change the magnitude of \(f(n) \). -- the function \(g(n) \) is sufficiently close to \(f(n) \) for large values of the input size \(n \).

• This "approximate" measure of efficiency is called asymptotic complexity.

• Thus the asymptotic complexity measure does not give the exact number of operations of an algorithm, but it shows how that number grows with the size of the input.

• This gives us a measure that will work for different operating systems, compilers and CPUs.
Big-O (asymptotic) Notation

- The most commonly used notation for specifying asymptotic complexity is the big-O notation.
- The Big-O notation, $O(g(n))$, is used to give an upper bound (worst-case) on a positive runtime function $f(n)$ where n is the input size.

Definition of Big-O:
- Consider a function $f(n)$ that is non-negative $\forall \ n \geq 0$. We say that “$f(n)$ is Big-O of $g(n)$” i.e., $f(n) = O(g(n))$, if $\exists \ n_0 \geq 0$ and a constant $c > 0$ such that $f(n) \leq cg(n)$, $\forall \ n \geq n_0$
Big-O (asymptotic) Notation

Implication of the definition:

- For all **sufficiently large** \(n \), \(c \times g(n) \) is an upper bound of \(f(n) \)

 Note: By the definition of Big-O:

 \[f(n) = 3n + 4 \text{ is } O(n) \]

 it is also \(O(n^2) \),

 it is also \(O(n^3) \),

 \[\ldots \]

 it is also \(O(n^n) \)

- However when Big-O notation is used, the function \(g \) in the relationship \(f(n) \) is \(O(g(n)) \) is CHOOSEN TO BE AS SMALL AS POSSIBLE.

 - We call such a function \(g \) a **tight asymptotic bound** of \(f(n) \)
Big-O (asymptotic) Notation

Some Big-O complexity classes in order of magnitude from smallest to highest:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>n log n</td>
</tr>
<tr>
<td>O(n^x)</td>
<td>Polynomial</td>
</tr>
<tr>
<td>O(a^n)</td>
<td>Exponential</td>
</tr>
<tr>
<td>O(n!)</td>
<td>Factorial</td>
</tr>
<tr>
<td>O(n^n)</td>
<td></td>
</tr>
</tbody>
</table>
Examples of Algorithms and their big-O complexity

<table>
<thead>
<tr>
<th>Big-O Notation</th>
<th>Examples of Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Push, Pop, Enqueue (if there is a tail reference), Dequeue, Accessing an array element</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Binary search</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear search</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>Heap sort, Quick sort (average), Merge sort</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>Selection sort, Insertion sort, Bubble sort</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>Matrix multiplication</td>
</tr>
<tr>
<td>O(2^n)</td>
<td>Towers of Hanoi</td>
</tr>
</tbody>
</table>
Warnings about O-Notation

• Big-O notation cannot compare algorithms in the same complexity class.
• Big-O notation only gives sensible comparisons of algorithms in different complexity classes when \(n \) is large.
• Consider two algorithms for same task:
 Linear: \(f(n) = 1000 \ n \)
 Quadratic: \(f'(n) = n^2/1000 \)
 The quadratic one is faster for \(n < 1000000 \).
Rules for using big-O

- For large values of input n, the constants and terms with lower degree of n are ignored.

1. **Multiplicative Constants Rule**: Ignoring constant factors.
 \[O(c \cdot f(n)) = O(f(n)), \text{ where } c \text{ is a constant}; \]
 Example:
 \[O(20 \cdot n^3) = O(n^3) \]

2. **Addition Rule**: Ignoring smaller terms.
 If $O(f(n)) < O(h(n))$ then $O(f(n) + h(n)) = O(h(n))$.
 Example:
 \[O(n^2 \log n + n^3) = O(n^3) \]
 \[O(2000 \cdot n^3 + 2n ! + n^{800} + 10n + 27n \log n + 5) = O(n !) \]

3. **Multiplication Rule**: $O(f(n) \cdot h(n)) = O(f(n)) \cdot O(h(n))$
 Example:
 \[O((n^3 + 2n^2 + 3n \log n + 7)(8n^2 + 5n + 2)) = O(n^5) \]
Proving Big-O Complexity

To prove that $f(n)$ is $O(g(n))$ we find any pair of values n_0 and c that satisfy:

$$f(n) \leq c \cdot g(n) \text{ for } \forall n \geq n_0$$

Note: The pair (n_0, c) is not unique. If such a pair exists then there is an infinite number of such pairs.

Example: Prove that $f(n) = 3n^2 + 5$ is $O(n^2)$

We try to find some values of n and c by solving the following inequality:

$$3n^2 + 5 \leq cn^2 \text{ OR } 3 + 5/n^2 \leq c$$

(By putting different values for n, we get corresponding values for c)

<table>
<thead>
<tr>
<th>n_0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>8</td>
<td>4.25</td>
<td>3.55</td>
<td>3.3125</td>
<td>3</td>
</tr>
</tbody>
</table>
Proving Big-O Complexity

Example:

Prove that \(f(n) = 3n^2 + 4n \log n + 10 \) is \(O(n^2) \) by finding appropriate values for \(c \) and \(n_0 \).

We try to find some values of \(n \) and \(c \) by solving the following inequality:

\[
3n^2 + 4n \log n + 10 \leq cn^2
\]

OR

\[
3 + 4 \log n / n + 10/n^2 \leq c
\]

(We used Log of base 2, but another base can be used as well)

<table>
<thead>
<tr>
<th>(n_0)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>13</td>
<td>7.5</td>
<td>6.22</td>
<td>5.62</td>
<td>3</td>
</tr>
</tbody>
</table>
How to determine complexity of code structures

Loops: for, while, and do-while:

Complexity is determined by the number of iterations in the loop times the complexity of the body of the loop.

Examples:

```java
for (int i = 0; i < n; i++)
    sum = sum - i;
O(n)
```

```java
for (int i = 0; i < n * n; i++)
    sum = sum + i;
O(n^2)
```

```java
i=1;
while (i < n) {
    sum = sum + i;
    i = i * 2
}
O(log n)
```
How to determine complexity of code structures

Nested Loops: Complexity of inner loop * complexity of outer loop.
Examples:

```java
sum = 0
for(int i = 0; i < n; i++)
    for(int j = 0; j < n; j++)
        sum += i * j ;
```

O(n²)

```java
i = 1;
while(i <= n) {
    j = 1;
    while(j <= n){
        statements of constant complexity
        j = j*2;
    } 
    i = i+1;
}
```

O(n log n)
How to determine complexity of code structures

Sequence of statements: Use Addition rule

\[O(s_1; s_2; s_3; \ldots \; s_k) = O(s_1) + O(s_2) + O(s_3) + \ldots + O(s_k) \]
\[= O(\max(s_1, s_2, s_3, \ldots, s_k)) \]

Example:

```java
for (int j = 0; j < n * n; j++)
    sum = sum + j;
for (int k = 0; k < n; k++)
    sum = sum - 1;
System.out.print("sum is now " + sum);
```

Complexity is \(O(n^2) + O(n) + O(1) = O(n^2)\)
How to determine complexity of code structures

Switch: Take the complexity of the most expensive case

```java
char key;
int[] X = new int[5];
int[][] Y = new int[10][10];

switch(key) {
    case 'a':
        for(int i = 0; i < X.length; i++)
            sum += X[i];
        break;
    case 'b':
        for(int i = 0; i < Y.length; j++)
            for(int j = 0; j < Y[0].length; j++)
                sum += Y[i][j];
        break;
}  // End of switch block
```

Overall Complexity: $O(n^2)$
How to determine complexity of code structures

If Statement: Take the complexity of the most expensive case:

```java
char key;
    int[][] A = new int[5][5];
    int[][] B = new int[5][5];
    int[][] C = new int[5][5];
    ........
    if(key == '+')  {
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                C[i][j] = A[i][j] + B[i][j];
    } // End of if block
    else if(key == 'x')
        C = matrixMult(A, B);
    else
        System.out.println("Error! Enter '+' or 'x'!");
```

- **O(n^2)**: Overall complexity
- **O(n^3)**: Complexity of the matrix multiplication operation.
How to determine complexity of code structures

- Sometimes if-else statements must carefully be checked:

 \[
 O(\text{if-else}) = O(\text{Condition}) + \max\{O(\text{if}), O(\text{else})\}
 \]

```java
int[] integers = new int[10];

if(hasPrimes(integers) == true)
    integers[0] = 20;
else
    integers[0] = -20;

public boolean hasPrimes(int[] arr) {
    for(int i = 0; i < arr.length; i++)
        ........
    ........
} // End of hasPrimes()
```

\[
O(\text{if-else}) = O(\text{Condition}) = O(n)
\]
How to determine complexity of code structures

- **Note:** Sometimes a loop may cause the if-else rule not to be applicable. Consider the following loop:

```java
while (n > 0) {
    if (n % 2 == 0) {
        System.out.println(n);
        n = n / 2;
    } else{
        System.out.println(n);
        System.out.println(n);
        n = n - 1;
    }
}
```

The else-branch has more basic operations; therefore one may conclude that the loop is $O(n)$. However the if-branch dominates. For example if n is 60, then the sequence of n is: 60, 30, 15, 14, 7, 6, 3, 2, 1, and 0. Hence the loop is logarithmic and its complexity is $O(\log n)$.