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Abstract—The paper presents models and analytical techniques 
for studying system behavior of an interrupt-driven kernel due to 
high packet arrival rate found in gigabit networks. An analytical 
study is presented describing the impact of high interrupt rate on 
system performance.  The performance is studied in terms of 
throughput, latency, and system power.  Equations are derived 
for system throughput, latency, power, and stability condition.  
Results from both reported experimental findings and simulations 
show that our analytical model is valid and give a good 
approximation.  To the best of authors' knowledge, the impact of 
interrupts on system performance had never been studied 
analytically in the past, and this analytical work is the first of its 
kind. 
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1. INTRODUCTION 
Interrupt overhead of Gigabit network devices can have a 

significant negative impact on system performance.   
Traditional operating systems were designed to handle network 
devices that interrupt on a rate of around 1000 packets per 
second, as is the case for 10Mbps Ethernet.  The cost of 
handling interrupts in these traditional systems was low 
enough that any normal system would spend only a fraction of 
its CPU time handling interrupts.  

For 100Mbps Ethernet, the interrupt rate increases to about 
8000 interrupts per second using the standard maximum 1500 
byte packets. However for Gigabit Ethernet, the interrupt rate 
for the maximum sized-packet of 1500 bytes increases to 
80,000 interrupts per second.  Of course with 10 Gigabit 
Ethernet and considering smaller packets, the problem is much 
worse. 

In Gigabit networks, the packet arrival rate surpasses the 
system packet processing rate which includes network protocol 
stack processing and interrupt handling.  With Gigabit Ethernet 
and a rate of 80,000 interrupts per second for a minimum sized 
packet of 512 bytes, the CPU must handle an interrupt in less 
than 4 µs in order to keep up with such a rate.  According to 
[1], a null system call (not an interrupt) on a typical 666 MHz 
Intel Pentium III takes on the order of 10 µs!  Also, a typical 
latency for handling interrupt due to a packet arrival in Linux 
is in the order of 50 µs! 

Interrupt-driven systems tend to perform very badly under 
such heavy load conditions.  Interrupt-level handling, by 
definition, has absolute priority over all other tasks.  If 
interrupt rate is high enough, the system will spend all of its 
time responding to interrupts, and nothing else will be 
performed; and hence, the system throughput will drop to zero.  
This situation is called receive livelock [2].   In this situation, 
the system is not deadlocked, but it makes no progress on any 

of its tasks, causing any task scheduled at a lower priority to 
starve or not have a chance to run.   At low packet arrival rates, 
the cost of interrupt overhead and latency for handling 
incoming packets are low.  However, interrupt overhead cost 
directly increases with an increasing of packet arrival rates, 
causing receive livelock. 

The receive livelock condition was shown by experiments 
and measurements in real systems [3,4].  In this paper we 
present a model for the receive livelock phenomenon and show 
its analytical solution.  These models can be utilized to 
understand and predict the performance and behavior of 
interrupt-driven systems and can be served as a reference 
model for comparing the performance of these proposed 
solutions to resolve the receive livelock condition.  More 
importantly, the paper presents an analytical study of system 
performance in terms of throughput, latency, and system 
power due to high rate of interrupts found in Gigabit networks. 

A number of solutions have been proposed to minimize the 
interrupt overhead and resolve receive livelock condition.  
Such solutions include interrupt coalescing, OS-bypass 
protocol, zero-copy, jumbo frames, polling, pushing some or 
all protocol processing to hardware, etc.  Some of these 
solutions are listed in [2,3,4,5,6].  However none of these 
solutions or others, to the best of our knowledge, modeled and 
studied analytically the performance and behavior of system 
performance under heavy network loads.   

The rest of the paper is organized as follows.  Section 2 
presents analysis for two models: an ideal system that ignores 
the impact of interrupts on system performance, and a second 
model that captures the system behavior under low and high 
network traffic intensity.  Numerical examples are given in 
Section 3.  A note on the accuracy of the analysis is given in 
Section 4. Finally, Section 5 has the conclusion and identifies 
future work. 

2. ANALYSIS 

In this section we present an analytical study to examine 
the impact of interrupts on system performance. At first we 
define system parameters.  Let λ be the average incoming 
packet arrival rate, and µ be the average protocol processing 
rate by the kernel. Therefore 1/µ  is the time it takes the system 
to process the incoming packet and deliver it to the application 
program.  This time includes primarily the network protocol 
stack processing by the kernel, excluding any interrupt 
handling.  However, the interrupt handling time will be 
denoted as TISR  , which is basically the interrupt service routine 
time for handling incoming packet. We will also denote ρ as a 
measure of the traffic intensity or system load and is defined as 
λ /µ .   



 

We study the system performance in terms of three 
commonly-used performance metrics. These metrics include 
throughput, latency, and system power.  System throughput (γ) 
is the rate at which packets are delivered by the kernel to the 
application program.  Latency or  the mean response time (R) 
which is the time duration between a packet arrival at the NIC 
and its delivery to the application program.  Since an 
improvement in system throughput would a have a negative 
impact on latency, and vice versa, system power (P) was 
proposed in [8] which resolves this contradiction.  System 
power gives the correct operating point that maximizes 
throughput and minimizes latency.  

2.1  Ideal System 
This section presents analysis for the ideal situation in 

which the overhead involved in generating interrupts is totally 
ignored.  Assuming packets are all of fixed sizes, we can 
simply model such a system as an M/M/1/B queue with a 
Poisson packet arrival rate λ and a mean protocol processing 
time of µ/1  that has an exponential distribution. B is the 
maximum size the system buffer can hold.  M/M/1/B queueing 
model is chosen as opposed to M/M/1 since we can have 
arrival rate go beyond the service rate, i.e. ρ  > 1. This 
assumption is true in Gigabit environment where under heavy 
load λ can be very high compared to µ. 

Note.  It is worth mentioning that in our analysis we assume 
a Poisson arrival for network traffic.  It is has to be stated that 
that network traffic is not always Poisson in nature.  However, 
such assumption makes analysis tractable. As we will 
demonstrate in Section 4 and 5, it turns out that our model with 
those assumptions including that of a Poisson arrival is a good 
approximation to an experimental model with real network 
traffic.   

In M/M/1/B model, the system throughput can be 
expressed as 

)1( 0p−= µγ , (2.1) 

where p0 is the probability that the system is idle and 

given by
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packet being dropped due to buffer being full. 

And  system power is expressed by [8] as 
RP αγ= , 

where α is a positive real number and is a tunable parameter. 
Normally, α = 1 where increasing throughput and decreasing 
latency are given equal weight. For our study we will set α = 1. 

2.2  Impact of Gigabit-Network Interrupts 
Modeling an interrupt-driven system is a challenging task 

especially when we consider the Gigabit networking 
environment where ρ  > 1.   For every incoming packet, an 
interrupt is initiated.  The system processes the packet by first 
executing the ISR and then handing it to the protocol stack 
where it gets processed.  Hence, the system protocol 
processing time per packet is simply equal to TISR  + µ1 .  
However the value of this processing time is not true all the 
time and it depends on the arrival time of the next packet.  If 
the next packet arrives while handling the interrupt of a 
previous packet, i.e., while the system execution has not 
finished the current ISR, the value of this process time will be 
TISR  + µ2 .  This is true since the new interrupt is being 
masked off because another interrupt of the same interrupt 
priority level is being serviced.  So a new TISR  is not incurred.  
However, kernel time to process 2 packets by the protocol 
stack will be µ2 .  

As a good design practice, we would like to minimize the 
execution time of the ISR as much as possible.  Therefore, we 
assume the primary job of the ISR is to notify the kernel of the 
arrival of a new packet.  The notification only happens after 
the packet is copied by the DMA to the system host memory.  
This assumption is valid since in gigabit networking 
environment, the use of DMA becomes necessary in order to 
eliminate any CPU overhead involved in copying packets from 
the NIC to kernel memory.   Major network vendors equip 
Gigabit NICs with DMA engines. These suppliers include 
3Com, HP, Alteon owned now by Nortel, Sundace, and 
NetGear.  

After the notification of the arrival of a new packet, the 
kernel will process the packet by first examining the type of 
frame being received and then invoking immediately the 
proper handling stack function or protocol, e.g. ARP, IP, TCP, 
etc.  The packet will remain in the kernel or system host 
memory until it is discarded or delivered to the user program 
or application. 

We also assume that the protocol processing for packets by 
the kernel will continue as long as there are packets available 
in the system memory buffer.  However, this protocol 
processing of packets can be interrupted by ISR executions as 
a result of new packet arrivals.  This is so because packet 
processing by the kernel runs at a lower priority than  the ISR. 

One may think that such an interrupt-driven system can be 
simply modeled as a priority queueing system with preemption 
in which there are two arrivals of different priorities. The first 
arrival constitutes that for ISRs and has the higher priority.  
The second arrival is the arrival for incoming packets, and has 
the lower priority.  As noted the ISR execution preempts 
protocol processing.   However this is an invalid model 
because ISR handling is not counted for every packet arrival.  
ISR handling is ignored if the system.is servicing another 
interrupt of the same level.  In other words, if the system is 
currently executing another ISR, the new ISR which is of the 
same priority interrupt level will be masked off and there will 
be no service for it. 

(2.2) 

(2.3) 



 

 

 
Figure 1.  Effective service time 

 
2.3  Mean Effective Service Time 

In this section, we find the mean effective service time for 
processing packets in the kernel protocol stack.   We first find 
the formula for the mean effective service time. Knowing this 
formula, the system can be modeled as an M/G/1 queue with a 
Poisson packet arrival rate of λ and a mean effective service 
rate of µ ′  that takes a general distribution.  

As illustrated in Figure 1, the effective service time is the 
actual time available for servicing a packet, exclusive of TISR 
disruption.  The available service time is the available time 
between successive TISR’s.  If a packet or multiple packets 
arrive during TISR, we will have batched or masked-off 
interrupts and the packets will be queued into the system with 
effectively one TISR disrupting the service time.   Therefore, the 
disruption of the service time is mainly influenced by the 
arrival rate of the packets λ and  TISR. 

Let us assume that TISR is exponentially distributed with 
mean TISR = r1 . One can express the mean effective service 
rate as: 
µ′  =  Rate at which packets are processed by the kernel’s network 

protocol with no interrupt disruption. 
Therefore,  

µ ′   = ⋅µ (% CPU availability for protocol processing). (2.4) 

In order to determine the CPU availability percentage for 
protocol processing and interrupt handling, we use a Markov 
process to model the CPU usage, as illustrated in Figure 2.  The 
process has state (0,0) and states (1,n).  State (0,0) represents 
the state where the CPU is available for protocol processing. 
States (1,n) with 0 < n < ∞ represent the state where the CPU is 
busy handling interrupts.  n denotes the number of packet 
arrivals that are being batched or masked off during TISR.  Note 
that when process is in state (1,0), this means there are no 
interrupts being masked off and the CPU is handling a single 
interrupt.  

 
Figure 2. Markov state transition diagram for modeling CPU usage 

The steady-state difference equations can be derived from    
0 = pQ, where p },,,,{ 2,11,10,10,0 Lpppp=  and Q is the rate-
transition matrix and is defined as follows 
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This will yield 
.0)( 2,11,10,10,0 =++++− Lppprpλ  

Since we know that 1
0 ,10,0 =+∑∞

=i ipp , then 

.0)1( 0,00,0 =−+− prpλ  
Solving for p0,0, we thus have 

,0,0 r
rp
+
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and 

.1 0,0 r
p

+
=−

λ
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Therefore the percentage of the CPU available for protocol 
processing packets and handling interrupts are  r / (λ + r) and   
λ / (λ + r), respectively.  And thus, the mean effective service 
rate can be expressed as: 

r
r
+

⋅=′
λ

µµ . 

It is to be noted from equation (2.4) that the mean effective 
service rate µ′  is exponential.  Therefore, we can model the 
system as M/M/1/B queue as is the case for the ideal system.  
However, the mean service rate µ will be replaced by the mean 
effective service rate µ′ . Hence, the system throughput γ , 
latency R, and power P  are expressed by equations (2.1), (2.2), 
and (2.3), respectively.   

A particular point of interest is finding the stability 
condition for the system.  The stability condition is the situation 
where 1<ρ , or is defined as the “cliff” point for system 
throughput.  It is where the throughput starts falling to zero as 
the system load increases.  The stability condition for the 
system can be expressed as: 

r
ror
+

⋅<<
λ

µλρ 1 . 

Solving for λ, we get: 
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Since the term under the square root is always greater than one 
then the negative sign is neglected. Therefore, the system will 
be stable whenever 
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Another interesting point is finding the maximum system 
power point.  This point is also the system correct operating 
point which gives maximum throughput and the minimum 
latency.  In order to accomplish this, we take the derivative of 
the power function with respect to λ, and solving the derivative 
after making it equal to zero.  From [9], the maximum power 
point occurs when ρ < 1.  Hence, it is suitable to model the 
system in this case only as M/M/1, since there is no need to 
consider the case when ρ > 1 as we all along assumed.  For this 
case, the throughput and latency as a function of λ are denoted 
by )(λγ  and R(λ),  respectively. 
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Taking the derivative of )(λP , 

λµ
λ
λ

2
)(

−′=
d

dP  

Setting 0=λddP , we get µλ ′=
2
1 . 

Thus, the maximum power point occurs when  
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2.4 Special Case 
We consider a special case when interrupt handling is 

ignored, i.e., when TISR = 0.  In this situation when TISR = 0,  r 
→ ∞.  We prove that equations  (2.5), (2.6), and (2.7) yield the 
same equations of the ideal system model, i.e., M/M/1/B 
queueing system, as follows:   
For mean effective service rate of  equation (2.5), 
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For finding λ  for stability condition of equation (2.6), 
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Applying L'Hopital Rule, we get 
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And finally for finding λ  that gives the maximum system 
power point of equation (2.7), 
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By applying L'Hopital Rule, we get 
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3.  NUMERICAL EXAMPLES 
In this section, we report some numerical results of our 

analytical model to study the behavior of the system and the 
impact of interrupts on system performance.  The system 
performance is studied as a function of traffic intensity ρ.  
Numerical results are also given for the ideal system when 
ignoring interrupts.  For all of these results, we fix µ  to 1 and 
B to a size of 1000. 

We first examine the system throughput as a function of 
traffic intensity ρ.  We study this relation with three TISR time 
units 0.2, 0.3, and 0.5.  A TISR time unit of 0.2 means that the 
interrupt service duration is 20% of the duration of the packet 
protocol processing time µ1 .   

Figure 3 depicts the impact of high and low traffic intensity 
on system throughput.  We note for the ideal system, the 
throughput is the expected one and matches very closely to the 
behavior of receive livelock.  However, the throughput is 
different when considering interrupts impact, i.e., the receive 
livelock phenomenon.  We note that the throughput doesn't fall 
rapidly to zero due to interrupt batching as illustrated in Section 
2.3. Figure 3 shows the system throughput for three cases of  
TISR 0.2, 0.3, and 0.5.   It is noted that as the interrupt overhead 
increases, i.e., increasing the value of TISR, the system 
throughput is degraded and the livelock phenomenon occurs 
earlier.   
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Figure 3. System throughput vs. traffic intensity 

(2.7) 

(2.6) 



 

Figure 3 also shows the cliff points for the system 
throughput.  As previously defined, the cliff points are those 
points where system throughput starts falling to zero as the 
system load increases.  As shown, the cliff points in terms of 
traffic intensity ρ  for TISR of 0.2, 0.3, and 0.5 are 0.85, 0.81, 
and 0.73, respectively.  Since we are fixing µ  to 1, the cliff 
points are the same for the system throughput, traffic intensity, 
and packet arrival rate.  These points match exactly the points 
derived by equation (2.6) for finding the stability condition. 
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Figure 4.  System latency vs. traffic intensity 

Figure 4 illustrates the relation between packet latency and 
traffic intensity for the same system parameter values 
considered for system throughput.  It is shown that the latency 
for the ideal system is the least and it is the worst when TISR is 
equal to 0.5.   

The impact of low and high traffic intensity on system 
power is shown in Figure 5.  In the ideal system, the maximum 
system power is when ρ = 0.5.  However, the maximum system 
power decreases with different values of TISR,, giving the least 
value for TISR = 0.5.   In addition the figure shows that the 
maximum power point for the system for TISR of 0.2, 0.3, and 
0.5 are for λ  of 0.46, 0.45, and 0.41, respectively.  These 
points match also exactly the points derived by equation (2.7) 
for finding λ that gives the maximum power point.   

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Traffic intensity (ρ)

S
ys

te
m

 P
ow

er

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

 
Figure 5. System power vs. traffic intensity 

4.  VERIFICATION AND VALIDATION OF ANALYSIS 
In order to verify our analytical model, we built a discrete-

event simulation using C programming and ran a wide number 
of simulation runs.  In all cases, a perfect accordance has been 
verified.  The analysis was also verified by proving that all 
derived equations yield the same as these of the ideal system 
model when considering the special case of ignoring the 
handling of interrupts. In addition, our analytical results were 
compared to results from experimental findings reported by 
[3,4], in particular for system throughput.  Our analytical 
results are very much inline with these reported experimental 
results.    

5.  CONCLUSION 
We presented a valid analytical model that captures the 

behavior of interrupt-driven systems when subjected to high 
interrupt rates.  We proposed and studied two models: an ideal 
system that ignores the impact of interrupts on system 
performance, and a second model which captures the system 
behavior under low and high traffic intensity.  Simulation and 
reported experimental results show that our analytical model is 
valid and give a good approximation. As a further study, we 
will evaluate the performance of the different proposed 
solutions for decreasing interrupt overhead and resolving the 
receive livelock problem. 
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