

Performance Evaluation of Interrupt-Driven Kernels in Gigabit Networks

K. Salah K. El-Badawi
Department of Information and Computer Science
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Email: {salah,elbadawi}@kfupm.edu.sa

Abstract—The paper presents models and analytical techniques
for studying system behavior of an interrupt-driven kernel due to
high packet arrival rate found in gigabit networks. An analytical
study is presented describing the impact of high interrupt rate on
system performance. The performance is studied in terms of
throughput, latency, and system power. Equations are derived
for system throughput, latency, power, and stability condition.
Results from both reported experimental findings and simulations
show that our analytical model is valid and give a good
approximation. To the best of authors' knowledge, the impact of
interrupts on system performance had never been studied
analytically in the past, and this analytical work is the first of its
kind.
Keywords: Interrupts, Receive Livelock, Gigabit Networks, Modeling,
Analysis, Performance, Operating Systems.

1. INTRODUCTION
Interrupt overhead of Gigabit network devices can have a

significant negative impact on system performance.
Traditional operating systems were designed to handle network
devices that interrupt on a rate of around 1000 packets per
second, as is the case for 10Mbps Ethernet. The cost of
handling interrupts in these traditional systems was low
enough that any normal system would spend only a fraction of
its CPU time handling interrupts.

For 100Mbps Ethernet, the interrupt rate increases to about
8000 interrupts per second using the standard maximum 1500
byte packets. However for Gigabit Ethernet, the interrupt rate
for the maximum sized-packet of 1500 bytes increases to
80,000 interrupts per second. Of course with 10 Gigabit
Ethernet and considering smaller packets, the problem is much
worse.

In Gigabit networks, the packet arrival rate surpasses the
system packet processing rate which includes network protocol
stack processing and interrupt handling. With Gigabit Ethernet
and a rate of 80,000 interrupts per second for a minimum sized
packet of 512 bytes, the CPU must handle an interrupt in less
than 4 µs in order to keep up with such a rate. According to
[1], a null system call (not an interrupt) on a typical 666 MHz
Intel Pentium III takes on the order of 10 µs! Also, a typical
latency for handling interrupt due to a packet arrival in Linux
is in the order of 50 µs!

Interrupt-driven systems tend to perform very badly under
such heavy load conditions. Interrupt-level handling, by
definition, has absolute priority over all other tasks. If
interrupt rate is high enough, the system will spend all of its
time responding to interrupts, and nothing else will be
performed; and hence, the system throughput will drop to zero.
This situation is called receive livelock [2]. In this situation,
the system is not deadlocked, but it makes no progress on any

of its tasks, causing any task scheduled at a lower priority to
starve or not have a chance to run. At low packet arrival rates,
the cost of interrupt overhead and latency for handling
incoming packets are low. However, interrupt overhead cost
directly increases with an increasing of packet arrival rates,
causing receive livelock.

The receive livelock condition was shown by experiments
and measurements in real systems [3,4]. In this paper we
present a model for the receive livelock phenomenon and show
its analytical solution. These models can be utilized to
understand and predict the performance and behavior of
interrupt-driven systems and can be served as a reference
model for comparing the performance of these proposed
solutions to resolve the receive livelock condition. More
importantly, the paper presents an analytical study of system
performance in terms of throughput, latency, and system
power due to high rate of interrupts found in Gigabit networks.

A number of solutions have been proposed to minimize the
interrupt overhead and resolve receive livelock condition.
Such solutions include interrupt coalescing, OS-bypass
protocol, zero-copy, jumbo frames, polling, pushing some or
all protocol processing to hardware, etc. Some of these
solutions are listed in [2,3,4,5,6]. However none of these
solutions or others, to the best of our knowledge, modeled and
studied analytically the performance and behavior of system
performance under heavy network loads.

The rest of the paper is organized as follows. Section 2
presents analysis for two models: an ideal system that ignores
the impact of interrupts on system performance, and a second
model that captures the system behavior under low and high
network traffic intensity. Numerical examples are given in
Section 3. A note on the accuracy of the analysis is given in
Section 4. Finally, Section 5 has the conclusion and identifies
future work.

2. ANALYSIS

In this section we present an analytical study to examine
the impact of interrupts on system performance. At first we
define system parameters. Let λ be the average incoming
packet arrival rate, and µ be the average protocol processing
rate by the kernel. Therefore 1/µ is the time it takes the system
to process the incoming packet and deliver it to the application
program. This time includes primarily the network protocol
stack processing by the kernel, excluding any interrupt
handling. However, the interrupt handling time will be
denoted as TISR , which is basically the interrupt service routine
time for handling incoming packet. We will also denote ρ as a
measure of the traffic intensity or system load and is defined as
λ /µ .

We study the system performance in terms of three
commonly-used performance metrics. These metrics include
throughput, latency, and system power. System throughput (γ)
is the rate at which packets are delivered by the kernel to the
application program. Latency or the mean response time (R)
which is the time duration between a packet arrival at the NIC
and its delivery to the application program. Since an
improvement in system throughput would a have a negative
impact on latency, and vice versa, system power (P) was
proposed in [8] which resolves this contradiction. System
power gives the correct operating point that maximizes
throughput and minimizes latency.

2.1 Ideal System
This section presents analysis for the ideal situation in

which the overhead involved in generating interrupts is totally
ignored. Assuming packets are all of fixed sizes, we can
simply model such a system as an M/M/1/B queue with a
Poisson packet arrival rate λ and a mean protocol processing
time of µ/1 that has an exponential distribution. B is the
maximum size the system buffer can hold. M/M/1/B queueing
model is chosen as opposed to M/M/1 since we can have
arrival rate go beyond the service rate, i.e. ρ > 1. This
assumption is true in Gigabit environment where under heavy
load λ can be very high compared to µ.

Note. It is worth mentioning that in our analysis we assume
a Poisson arrival for network traffic. It is has to be stated that
that network traffic is not always Poisson in nature. However,
such assumption makes analysis tractable. As we will
demonstrate in Section 4 and 5, it turns out that our model with
those assumptions including that of a Poisson arrival is a good
approximation to an experimental model with real network
traffic.

In M/M/1/B model, the system throughput can be
expressed as

)1(0p−= µγ , (2.1)

where p0 is the probability that the system is idle and

given by

=
+

≠
−

−

=
+

).1(
1

1

),1(
1

1
1

0
ρ

ρ
ρ

ρ

B

p
B

System packet processing latency R can be given by

)1(
)(

Bp
nE

R
−

=
λ

,

where 1
11

1
1

)(+
+−

+−
−

= B
B

BnE ρ
ρρ

ρ , and pB is the probability of

packet being dropped due to buffer being full.

And system power is expressed by [8] as
RP αγ= ,

where α is a positive real number and is a tunable parameter.
Normally, α = 1 where increasing throughput and decreasing
latency are given equal weight. For our study we will set α = 1.

2.2 Impact of Gigabit-Network Interrupts
Modeling an interrupt-driven system is a challenging task

especially when we consider the Gigabit networking
environment where ρ > 1. For every incoming packet, an
interrupt is initiated. The system processes the packet by first
executing the ISR and then handing it to the protocol stack
where it gets processed. Hence, the system protocol
processing time per packet is simply equal to TISR + µ1 .
However the value of this processing time is not true all the
time and it depends on the arrival time of the next packet. If
the next packet arrives while handling the interrupt of a
previous packet, i.e., while the system execution has not
finished the current ISR, the value of this process time will be
TISR + µ2 . This is true since the new interrupt is being
masked off because another interrupt of the same interrupt
priority level is being serviced. So a new TISR is not incurred.
However, kernel time to process 2 packets by the protocol
stack will be µ2 .

As a good design practice, we would like to minimize the
execution time of the ISR as much as possible. Therefore, we
assume the primary job of the ISR is to notify the kernel of the
arrival of a new packet. The notification only happens after
the packet is copied by the DMA to the system host memory.
This assumption is valid since in gigabit networking
environment, the use of DMA becomes necessary in order to
eliminate any CPU overhead involved in copying packets from
the NIC to kernel memory. Major network vendors equip
Gigabit NICs with DMA engines. These suppliers include
3Com, HP, Alteon owned now by Nortel, Sundace, and
NetGear.

After the notification of the arrival of a new packet, the
kernel will process the packet by first examining the type of
frame being received and then invoking immediately the
proper handling stack function or protocol, e.g. ARP, IP, TCP,
etc. The packet will remain in the kernel or system host
memory until it is discarded or delivered to the user program
or application.

We also assume that the protocol processing for packets by
the kernel will continue as long as there are packets available
in the system memory buffer. However, this protocol
processing of packets can be interrupted by ISR executions as
a result of new packet arrivals. This is so because packet
processing by the kernel runs at a lower priority than the ISR.

One may think that such an interrupt-driven system can be
simply modeled as a priority queueing system with preemption
in which there are two arrivals of different priorities. The first
arrival constitutes that for ISRs and has the higher priority.
The second arrival is the arrival for incoming packets, and has
the lower priority. As noted the ISR execution preempts
protocol processing. However this is an invalid model
because ISR handling is not counted for every packet arrival.
ISR handling is ignored if the system.is servicing another
interrupt of the same level. In other words, if the system is
currently executing another ISR, the new ISR which is of the
same priority interrupt level will be masked off and there will
be no service for it.

(2.2)

(2.3)

Figure 1. Effective service time

2.3 Mean Effective Service Time

In this section, we find the mean effective service time for
processing packets in the kernel protocol stack. We first find
the formula for the mean effective service time. Knowing this
formula, the system can be modeled as an M/G/1 queue with a
Poisson packet arrival rate of λ and a mean effective service
rate of µ ′ that takes a general distribution.

As illustrated in Figure 1, the effective service time is the
actual time available for servicing a packet, exclusive of TISR
disruption. The available service time is the available time
between successive TISR’s. If a packet or multiple packets
arrive during TISR, we will have batched or masked-off
interrupts and the packets will be queued into the system with
effectively one TISR disrupting the service time. Therefore, the
disruption of the service time is mainly influenced by the
arrival rate of the packets λ and TISR.

Let us assume that TISR is exponentially distributed with
mean TISR = r1 . One can express the mean effective service
rate as:
µ′ = Rate at which packets are processed by the kernel’s network

protocol with no interrupt disruption.
Therefore,

µ ′ = ⋅µ (% CPU availability for protocol processing). (2.4)

In order to determine the CPU availability percentage for
protocol processing and interrupt handling, we use a Markov
process to model the CPU usage, as illustrated in Figure 2. The
process has state (0,0) and states (1,n). State (0,0) represents
the state where the CPU is available for protocol processing.
States (1,n) with 0 < n < ∞ represent the state where the CPU is
busy handling interrupts. n denotes the number of packet
arrivals that are being batched or masked off during TISR. Note
that when process is in state (1,0), this means there are no
interrupts being masked off and the CPU is handling a single
interrupt.

Figure 2. Markov state transition diagram for modeling CPU usage

The steady-state difference equations can be derived from
0 = pQ, where p },,,,{ 2,11,10,10,0 Lpppp= and Q is the rate-
transition matrix and is defined as follows

Q

+−
+−

+−
+−

−

=

MMMMM

L

L

L

L

L

)(000
)(00

0)(0
00)(
000

rr
rr

rr
rr

λ
λλ

λλ
λλ

λλ

This will yield
.0)(2,11,10,10,0 =++++− Lppprpλ

Since we know that 1
0 ,10,0 =+∑∞

=i ipp , then

.0)1(0,00,0 =−+− prpλ
Solving for p0,0, we thus have

,0,0 r
rp
+

=
λ

and

.1 0,0 r
p

+
=−

λ
λ

Therefore the percentage of the CPU available for protocol
processing packets and handling interrupts are r / (λ + r) and
λ / (λ + r), respectively. And thus, the mean effective service
rate can be expressed as:

r
r
+

⋅=′
λ

µµ .

It is to be noted from equation (2.4) that the mean effective
service rate µ′ is exponential. Therefore, we can model the
system as M/M/1/B queue as is the case for the ideal system.
However, the mean service rate µ will be replaced by the mean
effective service rate µ′ . Hence, the system throughput γ ,
latency R, and power P are expressed by equations (2.1), (2.2),
and (2.3), respectively.

A particular point of interest is finding the stability
condition for the system. The stability condition is the situation
where 1<ρ , or is defined as the “cliff” point for system
throughput. It is where the throughput starts falling to zero as
the system load increases. The stability condition for the
system can be expressed as:

r
ror
+

⋅<<
λ

µλρ 1 .

Solving for λ, we get:

0,0 1,0 1,1 1,2 1,3

λ λ λ λ

r
r r r

. . .

CPU is
available for

protocol
processing CPU is busy handling ISR

Available service time

Effective service time

(1)

(1)

(2) (3) (4) Arrived
packet

Serviced
packet

(2)

(5) t = 0

time

ISR

1/λ

1/ r 1/ r 1/ r 1/ c 1/ c

(2.5)

0)(2 <−+⇒<+ rrrr µλλµλλ .

The roots of the quadratic equation 02 =−+ rr µλλ are

2

41

2
42

r
rrrrr

µ
µ

λ
+−

=
+−

=
m

m
.

Since the term under the square root is always greater than one
then the negative sign is neglected. Therefore, the system will
be stable whenever

−+< 141

2 r
r µλ .

Another interesting point is finding the maximum system
power point. This point is also the system correct operating
point which gives maximum throughput and the minimum
latency. In order to accomplish this, we take the derivative of
the power function with respect to λ, and solving the derivative
after making it equal to zero. From [9], the maximum power
point occurs when ρ < 1. Hence, it is suitable to model the
system in this case only as M/M/1, since there is no need to
consider the case when ρ > 1 as we all along assumed. For this
case, the throughput and latency as a function of λ are denoted
by)(λγ and R(λ), respectively.

λ
µ
λµ

µ
λµµλγ =

′

′=

′

−−′=−′= 11)1()(0p .

λµλ
λµ

λ

λ
λ

−′
=−′

== 1)()(nER .

()λµλ
λµ

λ
λ
γλλ −′=

−′
==∴

)(1)(
)()(

R
P .

Taking the derivative of)(λP ,

λµ
λ
λ

2
)(

−′=
d

dP

Setting 0=λddP , we get µλ ′=
2
1 .

Thus, the maximum power point occurs when

−+= 121

2 r
r µλ .

2.4 Special Case
We consider a special case when interrupt handling is

ignored, i.e., when TISR = 0. In this situation when TISR = 0, r
→ ∞. We prove that equations (2.5), (2.6), and (2.7) yield the
same equations of the ideal system model, i.e., M/M/1/B
queueing system, as follows:
For mean effective service rate of equation (2.5),

µ
λ

µ
λ
µµ =

+

=

+
=′

∞→∞→ 1
limlim

rr
r

rr
.

For finding λ for stability condition of equation (2.6),

,
2

141
lim

2
41

2
lim

−+

=

−+=

∞→∞→

r

rr
r

r
rr

µ
µλ

Applying L'Hopital Rule, we get

⋅=

+
=

 −
+

−
=

∞→∞→
µ

µ
µ

µ
µλ

rrrr rr 21
lim2

41
2

lim
22

And finally for finding λ that gives the maximum system
power point of equation (2.7),

−+

=

−+=

∞→∞→

r

rr
r

r
rr 2

121
lim

2
21

2
lim

µ
µλ .

By applying L'Hopital Rule, we get

2212
lim2

21
lim 22

µ
µ

µ
µ

µλ =

+
=

 −
+
−

=
∞→∞→ rrrr rr

.

3. NUMERICAL EXAMPLES
In this section, we report some numerical results of our

analytical model to study the behavior of the system and the
impact of interrupts on system performance. The system
performance is studied as a function of traffic intensity ρ.
Numerical results are also given for the ideal system when
ignoring interrupts. For all of these results, we fix µ to 1 and
B to a size of 1000.

We first examine the system throughput as a function of
traffic intensity ρ. We study this relation with three TISR time
units 0.2, 0.3, and 0.5. A TISR time unit of 0.2 means that the
interrupt service duration is 20% of the duration of the packet
protocol processing time µ1 .

Figure 3 depicts the impact of high and low traffic intensity
on system throughput. We note for the ideal system, the
throughput is the expected one and matches very closely to the
behavior of receive livelock. However, the throughput is
different when considering interrupts impact, i.e., the receive
livelock phenomenon. We note that the throughput doesn't fall
rapidly to zero due to interrupt batching as illustrated in Section
2.3. Figure 3 shows the system throughput for three cases of
TISR 0.2, 0.3, and 0.5. It is noted that as the interrupt overhead
increases, i.e., increasing the value of TISR, the system
throughput is degraded and the livelock phenomenon occurs
earlier.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3. System throughput vs. traffic intensity

(2.7)

(2.6)

Figure 3 also shows the cliff points for the system
throughput. As previously defined, the cliff points are those
points where system throughput starts falling to zero as the
system load increases. As shown, the cliff points in terms of
traffic intensity ρ for TISR of 0.2, 0.3, and 0.5 are 0.85, 0.81,
and 0.73, respectively. Since we are fixing µ to 1, the cliff
points are the same for the system throughput, traffic intensity,
and packet arrival rate. These points match exactly the points
derived by equation (2.6) for finding the stability condition.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Traffic intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 4. System latency vs. traffic intensity

Figure 4 illustrates the relation between packet latency and
traffic intensity for the same system parameter values
considered for system throughput. It is shown that the latency
for the ideal system is the least and it is the worst when TISR is
equal to 0.5.

The impact of low and high traffic intensity on system
power is shown in Figure 5. In the ideal system, the maximum
system power is when ρ = 0.5. However, the maximum system
power decreases with different values of TISR,, giving the least
value for TISR = 0.5. In addition the figure shows that the
maximum power point for the system for TISR of 0.2, 0.3, and
0.5 are for λ of 0.46, 0.45, and 0.41, respectively. These
points match also exactly the points derived by equation (2.7)
for finding λ that gives the maximum power point.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Traffic intensity (ρ)

S
ys

te
m

 P
ow

er

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 5. System power vs. traffic intensity

4. VERIFICATION AND VALIDATION OF ANALYSIS
In order to verify our analytical model, we built a discrete-

event simulation using C programming and ran a wide number
of simulation runs. In all cases, a perfect accordance has been
verified. The analysis was also verified by proving that all
derived equations yield the same as these of the ideal system
model when considering the special case of ignoring the
handling of interrupts. In addition, our analytical results were
compared to results from experimental findings reported by
[3,4], in particular for system throughput. Our analytical
results are very much inline with these reported experimental
results.

5. CONCLUSION
We presented a valid analytical model that captures the

behavior of interrupt-driven systems when subjected to high
interrupt rates. We proposed and studied two models: an ideal
system that ignores the impact of interrupts on system
performance, and a second model which captures the system
behavior under low and high traffic intensity. Simulation and
reported experimental results show that our analytical model is
valid and give a good approximation. As a further study, we
will evaluate the performance of the different proposed
solutions for decreasing interrupt overhead and resolving the
receive livelock problem.

ACKNOWLEDGMENT
The authors acknowledge the support of King Fahd

University of Petroleum and Minerals in the development of
this work.

REFERENCES
 [1] W. Feng, “Is TCP an Adequate Protocol for High-Performance

Computing Needs?” Proceedings of SC2000, Dallas, Texas, USA,
November 2000.

[2] K. Ramakrishnan, “Performance Consideration in Designing
Network Interfaces,” IEEE Journal on Selected Areas in
Communications, vol. 11, no. 2, February 1993, pp. 203-219.

[3] J. Mogul, and K. Ramakrishnan, “Eliminating Receive Livelock In
An Interrupt-Driven Kernel,” ACM Trans. Computer Systems, vol.
15, no. 3, August 1997, pp. 217-252.

[4] A. Indiresan, A. Mehra, and K. G. Shin, “Receive Livelock
Elimination via Intelligent Interface Backoff,” TCL Technical
Report, University of Michigan, 1998.

[5] P. Druschel, and G. Banga, “Lazy Receive Processing (LRP): A
Network Subsystem Architecture for Server Systems,” Proc.
Second USENIX Symp. on Operating Systems Design and
Implementation, October 1996, pp. 261-276.

[6] P. Shivan, P. Wyckoff, and D. Panda, “EMP: Zero-copy OS-
bypass NIC-driven Gigabit Ethernet Message Passing,”
Proceedings of SC2001, Denver, Colorado, USA, November 2001.

[7] C. Dovrolis, B. Thayer, and P. Ramanathan, “HIP: Hybrid
Interrupt-Polling for the Network Interface,” ACM Operating
Systems Reviews, vol. 35, October 2001, pp. 50-60.

[8] A. Giessler, J. Haanle, A. Konig, and E. Pade, “Free Buffer
Allocation – An Investigation by Simulation,” Computer
Networks, vol 1., no. 3, July 1978, pp. 191-204

[9] L. Kleinrock, "On the Modeling and Analysis of Computer
Networks," Proceedings of the IEEE, vol. 81, no. 8, August 1993,
pp 1179-1191.

