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Abstract

This paper studies the performance of interrupt-driven kernels when subjected to heavy network traffic such as

that of Gigabit Ethernet. Under heavy network traffic, the kernel performance will be negatively affected due

to interrupt overhead caused by the incoming traffic. In particular, excessive latency and significant

degradation in system throughput can be experienced. In this paper, we present analytical models to study the

performance in terms of two key kernel performance metrics: throughput and delay. The performance is also

studied using simulation. Both Poisson and bursty traffic with empirical packet size distribution are

considered.
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1. Introduction

The arrival rate for incoming packets in a Gigabit network link can surpass the system packet processing rate of

network protocol stack processing and interrupt cost. In fact even with today’s powerful multi gigahertz

processors, the cost of per-packet interrupt alone surpasses the inter-arrival time of packets. With Gigabit

Ethernet and the highest possible rate of 1.23 million interrupts per second for a minimum sized packet of 64

bytes, the CPU must process a packet in less than 0.82 µs in order to keep up with such a rate. According to

reported measurements in [1], an incoming-packet interrupt cost, on a 450MHz Pentium-III machine running

Linux 2.2.10, was 13.23 µs. With the presence of more powerful multi gigahertz processors these days, it is

expected the interrupt cost will not be decreased linearly by the speed frequency of the processor, as I/O and

memory speed limits dominate [2]. In [2] it was concluded that the performance of 2.4GHz processor only

scales to approximately 60% of the performance of an 800MHz processor.

Under heavy traffic load such as that of Gigabit networks, the performance of interrupt-driven systems can be

degraded significantly, and thus resulting in a poor host performance perceived by the user. For one thing,
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every hardware interrupt, for every incoming packet, is associated with context switching of saving and

restoring processor’s state as well as potential cache/TLB pollution. More importantly, interrupt-level

handling, by definition, has absolute priority over all other tasks. If interrupt rate is high enough, the system

will spend all of its time responding to interrupts, and nothing else will be performed; and hence, the system

throughput will drop to zero. This situation is called receive livelock [2]. In this situation, the system is not

deadlocked, but it makes no progress on any of its tasks, causing any task scheduled at a lower priority to starve

or not have a chance to run.

The receive livelock was established by experimental work on real systems in [2-4]. A number of solutions

have been proposed in the literature [1,3,5-13] to address network and system overhead and improve the OS

(Operating System) performance. Some of these solutions include interrupt coalescing, OS-bypass protocol,

zero-copying, jumbo frames, polling, pushing some or all protocol processing to hardware, etc. In most cases,

published performance results are based on research prototypes and experiments. However little or no research

has been done to study analytically the impact of interrupt overhead on OS performance. In [9,13], a simple

calculation of the interrupt overhead was presented. In [9], a mathematical equation was given directly for

application throughput based on packet length and cost of interrupt overhead per byte and per packet. In [13],

the interrupt overhead was computed based on the arrival rate, ISR (Interrupt Service Routine) time, and a fixed

cost of interrupt overhead. Both of these calculations are very simple. The calculations fail to consider

complex cases such as interrupt masking, CPU utilization, and effect of ISR and its overhead on packet

processing at OS and application levels. Moreover, the calculations fail to capture the receive livelock

phenomenon and identify the saturation point of the host.

In this paper, we study the performance in terms of two key system performance metrics: throughput and delay.

Also, equations are given for CPU utilization and saturation conditions. Since our analysis is based on

queueing theory, our analytical work can be easily extended to study mean waiting time, mean number of

packets in system and queues, blocking probability, etc. [14]. In addition, our analytical work can be important

for engineering and designing various NIC (Network Interface Card) and system parameters. These parameters

may include the proper service times for ISR handling and protocol processing, buffer sizes, CPU bandwidth

allocation for protocol process and application, etc.

In previous work [15], we presented a preliminary analytical study. The system performance was studied

primarily based on throughput. A detailed simulation models for hosts with PIO and DMA were given in [16].

In sharp contrast to our previous work presented in [15,16], this paper is different in significant ways. First, the

host performance is studied and compared in terms of two key performance indicators which include system

throughput and system latency. Second, we utilize DES simulation to model and examine the performance

when host is subjected to not only to Poisson traffic but also to bursty traffic with variable packet sizes. Third

and as opposed to our previous work, we consider more realistic values for system parameters that suit modern

Gigabit network environment and hosts. In our previous work we used system parameters of 400 MHz

Pentium III machines and with network traffic of 10 and 100 Mbps. In this article we consider system
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parameters of today’s state-of-the-art CPU cores such as the 2.53 GHz Pentium-IV machines and with network

traffic of 1Gbps.

The rest of the paper is organized as follows. Section 2 presents an analytical model to study system behavior

and derives equations for various system performance metrics. Numerical examples showing both analysis and

simulation results under Poisson traffic are given in Section 3. Section 4 examines performance impact when

hosts are subjected to bursty traffic with empirical variable-size packets. The impact is studied using

simulation. Finally, Section 5 concludes the study and identifies future work.

2. Analysis

In this section we present an analytical study to examine the impact of interrupt overhead on system

performance. First we define the system parameters. Let λ be the mean incoming packet arrival rate, and µ be

the mean protocol processing rate carried out by the kernel. Therefore 1/µ is the time the system takes to

process the incoming packet and deliver it to the application process. This time includes primarily the network

protocol stack processing carried out by the kernel, excluding any interrupt handling. Let TISR be the interrupt

handling time, which is basically the interrupt service routine time for handling incoming packets. We will also

define µλρ = . ρ is as a measure of the traffic intensity or system load. We study the system performance in

terms of system throughput (γ) and delay (R). System throughput is the rate at which packets are delivered by

the kernel to the application process. System delay is the latency of delivering one packet by the kernel to the

application once received by the network adapter. In addition, we investigated two important and critical

operating points for the system, mainly receive lock and saturation. Receive-livelock point is the point at

which system throughput becomes zero. Saturation point is the point at which the system can not keep up with

the offered load.

Throughout our analysis, we assume the times for protocol processing or ISR handling to be not constant.

Both of these service times change due to various system activities. For example ISR handling for incoming

packets can be interrupted by other interrupts of higher priority, e.g. timer interrupts. Also, protocol processing

can be interrupted by higher priority kernel tasks, e.g. scheduler. For our analysis, we assume both of these

service times to be exponential. Also we assume the network traffic follows a Poisson process, i.e. the packet

interarrival times are exponentially distributed with fixed packet sizes. This assumption is valid for Constant

Bit Rate (CBR) traffic such as uncompressed interactive audio and video conferencing.

Our analytical models assume Poisson traffic with fixed-size packets. In practice, network traffic is not always

Poisson and packets are not always fixed in size. In [17-19], it was shown that Ethernet traffic is bursty and

characterized as self-similar with long range dependence. An analytical solution becomes intractable when

considering variable-size packets and non-Poisson arrivals. In Section 4, we use simulation to study and

compare the impact of bursty traffic with empirical variable packet sizes on system performance.
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2.1. Ideal System

In the ideal system, we assume the overhead involved in generating interrupts is totally ignored. With our

assumptions, we can simply model such a system as an M/M/1/B queue with a Poisson packet arrival rate λ and

a mean protocol processing time of µ/1 that has an exponential distribution. B is the maximum size the system

buffer can hold. M/M/1/B queueing model is chosen as opposed to M/M/1 since we can have the arrival rate go

beyond the service rate, i.e., 1>ρ . This assumption is a must for Gigabit environment where under heavy load

λ can be very high compared to µ.

2.2. DMA Option

For our hosts, we assume that the NIC (Network Interface Card) is equipped with DMA engines. However, a

NIC adapter can be designed with a PIO-based option. A NIC adapter with PIO-based design can be an

attractive option when considering factors such as cost, simplicity, and speed and efficiency in copying

relatively small-size packets [20]. However, a major drawback for a PIO-based design is burdening the CPU

with copying incoming packets from the NIC to kernel memory. In order to save CPU cycles consumed in

copying packets, major network vendors equip high-speed NICs with DMA engines. These vendors include

Intel, 3Com, HP, Alteon owned now by Nortel, Sundace, and NetGear. NICs are equipped with a receive Rx

DMA engine and a transmit Tx DMA engine. A Rx DMA engine handles transparently the movement of

packets from the NIC internal buffer to the host system memory. A Tx DMA engine handles transparently the

movement of packets from the host memory to the NIC internal buffer. Both DMA engines operate in a bus-

master fashion, i.e. the engines request access to the PCI bus instead of waiting to be polled. It is worth noting

that the transfer rate of incoming traffic into the kernel memory across the PCI bus is not limited by the

throughput of the DMA channel. These days a typical DMA engine can sustain over 1 Gbps of throughput for

PCI 32/33 MHz bus and over 4 Gbps for PCI 64/66 MHz bus [21,22].

After the notification of the arrival of a new packet, the kernel will process the packet by first examining the

type of frame being received and then invoking immediately the proper handling stack function or protocol, e.g.

ARP, IP, TCP, UDP, etc. The packet will remain in the kernel or system memory until it is discarded or

delivered to the user application. The network protocol processing for packets carried out by the kernel will

continue as long as there are packets available in the system memory buffer. However, this protocol processing

of packets can be interrupted by ISR executions as a result of new packet arrivals. This is so because packet

processing by the kernel runs at a lower priority than the ISR.

There are two possible system delivery options of packet to user applications. The first option is to perform an

extra copy of packet from kernel space to user space. This is done as part of the OS protection and isolation of

user space and kernel space. This option will stretch the time of protocol processing for each incoming packet.

A second option eliminates this extra copy using different techniques described in [6-8,23-25]. The kernel is

written such that the packet is delivered to the application using pointer manipulations. Our analytical model
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captures both options. The only difference is in the protocol processing time. The second option will have a

smaller processing time than the first.

It is important to note that the NIC is typically configured such that an interrupt is generated after the incoming

packet has been completely DMA'd into the host system memory. In order to minimize the time for ISR

execution, ISR handling mainly sets a software interrupt to trigger the protocol processing for the incoming

packet. In this situation if two or more packets arrive during an ISR handling, the ISR time for servicing all of

these packets will be the ISR time for servicing a single packet, with no extra time introduced.

Let us assume that the TISR for handling an interrupt is exponentially distributed with a mean of r/1 . One can

express the mean effective service rate as

µ ′ = Rate at which packets gets processed by the kernel’s network protocol given that the CPU is available

for protocol processing, i.e. the CPU is not handling ISR.

µ ′ = ⋅µ (% CPU availability for protocol processing). (1)

The DMA-based design option can be modeled as an M/G/1/B queue with a Poisson packet arrival rate of λ and

a mean effective service time of µ′1 that has a general distribution. In order to determine the mean effective

service time µ′1 , we need to determine the CPU availability and usage percentages for protocol processing

and interrupt handling, respectively. We use a Markov process to model the CPU usage, as illustrated in Figure

1. The process has state (0,0) and states (1,n). State (0,0) represents the state where the CPU is available for

protocol processing. States (1,n) with 0 ≤ n < ∞ represents the state where the CPU is busy handling interrupts.

n denotes the number of interrupts that are batched or masked off during TISR. Note that n+1 denotes the

number of packet arrivals during ISR handling. Therefore, state (1,0) means there are no interrupts being

masked off and the CPU is busy handling an ISR with one packet arrival. State (1,1) means that one interrupt

has been masked off and the CPU is busy handling an ISR with two packet arrivals. Both of these packets will

be serviced together with a mean rate r of servicing only one packet.

Figure 1. Markov state transition diagram for modeling CPU usage due to ISR with DMA
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The steady-state difference equations can be derived from pQ=0 , where p },,,,{ 2,11,10,10,0 �pppp= and Q is

the rate-transition matrix and is defined as follows:
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Therefore, the CPU availability percentage for protocol processing and the CPU utilization for handling

interrupts are )(/ rr +λ and )(/ r+λλ , respectively.

Thus, the mean effective service rate can be expressed as

r

r

+
⋅=′
λ

µµ . (2)

The term
r

r

+λ
is the percentage of CPU bandwidth available for protocol processing, and is equal to

r+
−

λ
λ

1 . Please note that by examining equation (1), the disrupted or effective service time with a mean

µ ′1 is exponentially distributed since the service time with a mean of µ1 is exponential, and thus the
M/G/1/B queueing model becomes the known Markovian queue of M/M/1/B.

2.3. Throughput Analysis

In an M/M/1/B model or the ideal system, the mean system throughput γ can be expressed as

)1( 0p−= µγ , (3)

where p0 is the probability of zero packets being processed by the kernel's network protocol stack. p0 is given

by
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The system throughput can be expressed by equation (3). However, the mean service rate µ of equation (3)

must be replaced by the mean effective service rate µ′ of equation (2).

2.4. Receive-Livelock Point

A critical operating point for a system is the condition at which the system throughput becomes zero. This

condition is where receive livelock occurs. By examining equation (3), system throughput (γ) can be zero if p0

= 1 or the mean service rate µ is zero.

The mean effective service rate µ′ of equation (2) depends only on the values of λ and r, as copying has been

eliminated. From theoretical aspect as given by equation (2), µ′ does not become zero unless ∞→λ . This

means that the receive-livelock point for DMA occurs theoretically when ∞→λ . However from practical

aspect, having an incoming packet arrival rate λ to reach infinity is not possible due to the physical limitation

of host hardware as well as the capacity limit of network link. Host physical limitation is related to PCI bus,

DMA engines, memory speed, etc. Nowadays the transfer bit rate of a 64/66 MHz PCI bus goes little over 4

Gbps [21,22]. Also the current exiting Ethernet links have a bandwidth of up to 10 Gbps. Of course the

incoming packet rate λ is much less than such a bit rate as it gets reduced by the packet size and payload

overhead. Therefore from practical aspect, the receive livelock should not occur when employing DMA.

2.5. Saturation Point

Another critical operating point for a system is the situation at which the system can not keep up with the

offered network load. This is referred to as the saturation point where 1=ρ , or is defined as the “cliff” point of

system throughput. It is where the throughput starts falling as the network load increases.

The saturation point can be expressed as

r
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Since the term under the square root is always greater than one then the negative sign is neglected. Therefore,

the saturation point for this system occurs when
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It is to be noted that equation (5) can also be derived by finding the maximum point of system throughput. This

can be done by taking the derivative of the system throughput of equation (3) with respect to λ and setting it to

zero, i.e. 0=
λ
γ

d

d
, and then solving for λ .

2.6. Delay Analysis

In M/M/1/B model or the ideal system, the mean system packet processing delay )(rE can be given by
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The mean system delay per packet is affected by both ISR handling and protocol processing. An incoming

packet experiences a delay due to interrupt handling and due to the delay of protocol processing. To determine

this delay analytically, we apply Jackson’s queueing theorem in which the mean system delay is approximated

to be the sum of the mean delay of interrupt handling plus the mean delay of protocol processing. Hence the

total mean system delay, )(rE , according to Jackson theorem can be expressed as

)()()( rErE IPISRrE += , (6)

where )(rEISR is the mean delay due to ISR and )(rEIP is mean delay due to protocol processing.

)(rEISR is simply r/1 . This is so due to the nature of servicing packets during ISR handling. The mean ISR

handling time for one packet or many packets is the same, i.e. r/1 . This delay can also be computed using the

Markov chain depicted in Figure 1. First we compute np ,1 from Figure 1. Using mathematical induction and

the iterative method of solving the steady-state difference equations, .
2

,1

+
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n r

r
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λ
The average

number of packets being serviced by one ISR, )(NEISR , can be computed using the Markov chain depicted in

Figure 1, and consequently can be expressed as
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And therefore, the average ISR delay per packet, )(rEISR , according to Little’s law, is

r
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As for the mean delay caused by protocol processing, )(rEIP , it is simply the mean delay encountered in the

M/M/1/B queueing system with ��
�

�
��
�

�
=

'µ
λρ . According to [14], such delay can be expressed as
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ρ
and 'λ is the mean effective arrival rate. 'λ is the same as the mean

system throughput γ given by equation (3) with µµ ′= . Also remember that the µ′ , to be substituted in the

equations of 'λ and ρ , is given by equation (2) in this case.

3. Analysis Verification and Validation

In this section we verify and validate our analysis two ways: by considering some special cases and by

utilizing a DES simulation.

3.1. Special Cases

We consider a special case when interrupt handling is ignored, i.e., the ideal system when TISR = 0. In this

situation when TISR = 0, r → ∞. With this condition, we prove that the equations for the mean effective service

rate, saturation point and mean system latency become the same equations for the ideal system.

Mean effective service time. We prove that equation (2) yields the ideal system mean service rate µ as follows:
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Mean system delay. When the interrupt is ignored, it is expected the delays encountered by the interrupt

overhead resort to zero. When examining )(rEISR equation (7), it can be concluded easily that )(rEISR , when

r → ∞, becomes zero. This is in line with intuition and our expectation. Consequently, the mean system delay

becomes that of an M/M/1/B queueing system, i.e., the ideal system.

3.2. Simulation

In order to verify and validate our analytical models, a discrete-event simulation model was developed and

written in C language. A detailed description and flowcharts of the simulation model for normal interruption

can be found in [16]. The assumptions of analysis were used. The simulation followed closely and carefully

the guidelines given in [26]. We used the PMMLCG as our random number generator [26]. The simulation

was automated to produce independent replications with different initial seeds that were ten million apart.

During the simulation run, we checked for overlapping in the random number streams and ascertain that such a

condition did not exist. The simulation was terminated when achieving a precision of no more than 10% of the

mean with a confidence of 95%. We employed and implemented dynamically the replication/deletion

approach for means discussed in [26]. We computed the length of the initial transient period using the MCR

(Marginal Confidence Rule) heuristic developed by White [27]. Each replication run lasts for five times of the

length of the initial transient period. Analytical and simulation results, as will be demonstrated in Section 3.3,

were very much in line.

3.3. Numerical Examples

In this section, we report and compare results of analysis and simulation. Numerical results are given for two

key performance indicators: mean system throughput and latency. For our numerical examples, realistic values

for system parameters, that suit modern Gigabit network environment and hosts, must be used. Experimental
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study is the best approach to give accurate measurements, as well as the underlying probability distributions.

Such experimental is beyond the scope of this paper and left for future work. However, for the sole purpose of

comparison, we base our values on modern credible experimental measurements reported in the literature.

The overall interrupt cost 1/r includes both interrupt overhead and handling. In [28], the interrupt overhead for

an off-chip timer interrupt with a null event handler was measured to be in the vicinity of 4.36 µs on a 500MHz

Pentium-III machine running for FreeBSD-2.2.6. A similar result of 7.7 µs was reported by [4] on a 450MHz

Pentium-III machine running Linux 2.2.10. For a modern 2.53GHz Pentium-IV machine, it is expected this

overhead will not be decreased linearly by the speed frequency of the processor, as I/O and memory speed

limits dominate [29]. In [29] it was concluded that the performance of 2.4GHz processor only scales to

approximately 60% of the performance of an 800MHz processor. Consequently the NIC interrupt overhead

with null handler for a modern 2.53GHz Pentium-IV machine can be roughly 60% of 4.36, which is 2.62 µs.

In [4] the interrupt handling was measured to be 5.53 µs on a 450MHz Pentium-III machine running Linux

2.2.10. The measurement of interrupt handling included substantial work and a major cache pollution. The

handling included appending the packet from DMA ring to protocol buffer, replenishment of the DMA ring,

and finally notifying the protocol processing. In our case, considering the speed of the processor and limited

work for the interrupt handling, which primarily includes notification of protocol processing with minimal

cache pollution, we assume the handling cost is 20% of 5.53, or 1.11 µs. Hence for a modern 2.53GHz

Pentium-IV machine, the overall interrupt cost 1/r = 2.62 + 1.11 = 3.73 µs.

For protocol processing, we use the TCP processing values measured by lmbench [30] on a 2.53GHz Pentium-

IV running Linux 2.4.18. The results are reported in [31]. Also results for different machines are reported in

[32]. From the results in [31], it is reported that the average local loopback latency for one TCP token (i.e., 4-

byte data packet) is 10.5 µs. This time, of course, includes OS overhead as well as TCP actual processing.

Ideally, the TCP latency of the receiving path would be approximately half of 10.5, that is 5.25 µs. TCP

processing also includes copying of packet payload to user application. [31] reports that the average TCP

bandwidth (buffering and copying) is 748 Mbytes/s. Therefore, for a minimum packet size of 64 bytes, the cost

of copying and buffering is 64/748= 0.086 µs. Hence the mean TCP processing time µ1 (for a fixed size

packet of 64 bytes) can be summed up to approximately 5.34 µs. In all of our examples, we fix the kernel’s

protocol processing buffer B to a size of 1000 packets, which occupies about 1.5M bytes of host memory when

assuming a maximum of 1538 bytes per packet in accordance to IEEE802.3 standards. This buffer size is a

configurable parameter [33].
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Figure 2a, 2b, and 2c plot the mean system throughput, mean system latency at low load, and mean system

latency at high load, respectively, as a function of the system load represented by the packet arrival rate. The

packet arrival rate is Poisson for both analysis and simulation. The load and throughput are both expressed in

pps (packets per second). Both of these measures can easily be expressed in bits per second by multiplying the

packet rate by the packet size. For clarity and interpretations of results, we chose to express these two

measures in pps. The figures exhibit a very close agreement between discrete-event simulation results and

analysis results.
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Figure 2.System throughput and delay in relation to a Poisson arrival rate

From the figures, it is observed that the maximum throughput occurs at 187 Kpps. It can be noted that the

saturation or cliff point for the system occurs at 127 Kpps. At this point, the corresponding CPU utilization (for

ISR handling plus protocol processing) is at 100%, and thus resulting in a CPU availability of zero. Therefore,

user applications will starve and livelock at this point. Figure 2a shows that as the arrival rate increases after

the cliff point the system throughput starts to decline. Figure 2c shows the mean system delay also continues to

increase after reaching the saturation point. Theoretically, the latency should flatten off at 'µB , but rather we

find it slowly shoots to infinity. The decline in the throughput and the sharp increase in latency is due to the

fact that the mean effective service rate 'µ decreases as the arrival rate increases right after the saturation point.

See equation (2). Intuitively, CPU availability for protocol processing decreases as CPU becomes more

utilized handling ISR.

4. Impact of Bursty Traffic

Assuming Poisson arrival for network traffic can be valid for modeling real-time voice and video traffic [34].

However such a Poisson traffic fails for modeling Ethernet traffic. It was shown that Ethernet traffic is bursty

and characterized as self-similar with long-range dependence [18,19]. A comprehensive summary and review

of the topic of self-similar network traffic can be found in [35]. For examining the impact of bursty traffic on

the system performance, we modified our discrete-event simulation accordingly. To generate such a bursty

traffic, we implemented the method described in [36]. This method follows fractional Gaussian noise such as

the resulting self-similar traffic is obtained by aggregating multiple streams (one stream per source) each
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consisting of alternating Pareto-distributed ON/OFF periods. In our simulation we used 100 streams. Figure 3

illustrates graphically the aggregation of multiple streams.
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Figure 3. Self-similar traffic generation model

Pareto distribution is a heavy-tailed distribution with PDF of bxxabxf ≥= + ,)( 1αα , where α is a shape

parameter and b is a location parameter. We use this distribution to generate both the ON and OFF periods

with shape parameters of 3.1=ONα and 5.1=OFFα , respectively. The choice of the values of these shape

parameters are commonly used and promoted by measurements on actual Ethernet traffic performed in [19].

The location parameter of ONb is the minimum ON period and depends on the minimum Ethernet frame size of

64 bytes. This is fixed to 64x8 bit times or 512 ns. The calculation of OFFb can be computed from the desired

total load for all sources, i.e., �=
i

iTotal ρρ . We assume equal loads for all sources. The individual load of a

single source is measured as ])[][/(][ OFFEONEONEi +=ρ . Note that the load Totalρ takes on values

between 0 to 1. In Pareto, )1()(][ −= ONONON bONE αα and )1()(][ −= ONONON bONE αα . Solving these

simple formulas, OFFb can be expressed (in terms of the known parameters of Totalρ , ONb , ONα , and OFFα ) as
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During the ON period, packets are generated back-to-back with a rate of 1 Gbps. The number of packets

generated in the ON period depends on the ON period, the packet size, and the inter-packet size. The inter-

packet size is 20 bytes which comprises of the standard minimum Ethernet IFG of 12 bytes plus 8 bytes for the

preamble. The packet sizes are not fixed and follow an empirical distribution, which are real measurements of

packet sizes from MCI backbone. The measurements are reported in [37] and available online at

http://www.caida.org. In [37], the reported packet size distribution represents IP datagram sizes. To obtain

Ethernet frame size distribution, the packet sizes were modified to include 18-byte header (12 bytes for
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destination and source addresses, 2 bytes for length/type, and 4 bytes for FCS). In addition all bytes shorter

than 46 bytes were padded to 46 bytes, so that the minimum Ethernet frame size is equal to 64 bytes. The

histogram and CDF of the resulting Ethernet frame sizes are shown in Figure 4. The figure shows dominating

frame sizes of 64, 570, 594, and 1518 bytes.
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Figure 4. Histogram of empirical packet sizes and their corresponding CDF

It is to be noted when packet sizes are variable, the service time for protocol processing is strongly correlated

with the packet size, primarily due to CRC checksum calculation and copying to application layer. In this case,

the service time for protocol reprocessing is comprised of packet overhead which is exponentially distributed

with a mean of 5.25 µs plus a fixed per-byte overhead of PacketSize/(748 Mbytes/s).

The simulation results shown in Figure 5 represent the estimated mean of 10 simulation replications. We had

to fix the number of replications when generating bursty traffic. As opposed to the simulation carried out with

Poisson traffic, a simulation run with bursty traffic can not be automated to stop when achieving a desired

precision for the estimated mean. This is because of the presence of irregular incoming traffic. The irregularity

of traffic is due to the use of empirical variable packet sizes and the superposition of multiple streams with each

stream producing ON and OFF periods (with huge variance) modeled by heavy tailed distribution such as that

of Pareto. The problem is exacerbated when the Pareto’s shape parameter α is close to 1 (as is the case for the

shape parameters for our ON and OFF periods). Therefore simulation with such traffic will be very slow to

converge to steady state and thus the CI (Confidence Interval) can be very long [38]. In order to obtain

relatively acceptable accuracy and precision, simulation has to produce a huge number of samples [38]. For

our simulation, each replication generated for each source at least 10 million samples for its ON period and

another 10 millions for its OFF period. Care was taken to make sure that there is no overlapping in the random

number streams of simulation.
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Figure 5a, 5b, and 5c plot the mean system throughput, mean system latency at low load, and mean system

latency at high load, respectively, as a function of the aggregated self-similar traffic load Totalρ . By

subjectively eyeballing the performance curves and comparing their shapes to the performance curves of

Poisson traffic of Figure 2, we find the shapes of the curves are very similar for the most part. Figure 5a shows

at low load a curved shape for the achievable system throughput as opposed to straight one. This is because the

units for the throughput and the load are not the same. Remember that the load Totalρ takes a value between 0

to 1. Also note that the highest average system throughput is around 167 Kpps. This is expected as the average

empirical packet size, based on the distribution presented in Figure 4, is 557 bytes. The average protocol

processing service time is the sum of fixed packet overhead of 5.25 µs plus a fixed per-byte overhead of

PacketSize/(748 Mbytes/s). This yields an average service time of 5.99 µs, or a throughput of 167Kpps.
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Figure 5. Key performance indicators in relation to system load of bursty traffic

Identifying the cliff or saturation point is a key design parameter. For Poisson traffic, Equation (5) gives a cliff

point at 127 Kpps. For bursty traffic, Equation (5) surprisingly also gives an adequate approximation for the

cliff point. The cliff point can be computed if the average packet size is measured. Based on the empirical

packet size distribution, the average packet size is 557bytes. As discussed earlier, this yields an average

protocol service time of 5.99 µs, or a rate of 167Kpps. Consequently and applying Equation (5), the cliff point

cliffλ for bursty traffic is 116 Kpps, which is very much in line with the simulation results of Figure 5a.

5. Conclusion

We developed analytical models to study the impact of interrupt overhead caused by high-speed network traffic

on OS performance. We presented a throughput-delay analysis for hosts when subjected to light and heavy

network loads. We considered high-speed network hosts with the DMA design option. We also investigated

two critical system operating points, mainly receive livelock and saturation. We considered both Poisson and

bursty traffic with variable packet sizes. It was concluded that the system performance under bursty traffic was

similar to that of Poisson traffic. As noted, degraded throughput and excessive latency can be encountered due

to heavy network loads. Our analysis effort provided equations that can be used to easily and quickly predict

the system performance and behavior when engineering and designing network adapters, device drivers, and

OS network and communication software. An acceptable performance level varies from one system

requirement to another and depends on the worst tolerable system throughput and latency. As a further work,
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we will study and evaluate the performance of the different proposed solutions for minimizing and eliminating

the interrupt overhead caused by heavy network loads.
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