1
6

ICS 232 LABWORK#7 (Term 992)

Objectives:

1. RECURSIVE PROCEDURES.

Terminating gracefully from a recursive procedure in which an error condition is detected.

Preventing the stack overflow condition in recursive procedures.

2. STAND ALONE PROCEDURES.

Using macros to write stand-alone procedures.

Using Nested Procedures to write stand -alone procedures.

3. HEXADECIMAL I/O ROUTINES.

4. DETECTING SIGNED AND UNSIGNED OVERFLOW.

DETECTING UNSIGNED OVERFLOW

· The Carry Flag (CF) is set if there is unsigned overflow. Unsigned overflow occurs if the result is too large to fit into the destination operand. In a program unsigned overflow can be detected by a construct of the form:

Flag modifying instruction

JC UNSIGNED_OVERFLOW

.

.
; action if there is no unsigned overflow

.

JMP DONE

UNSIGNED_OVERFLOW:

.

.
; action if there is unsigned overflow

.

DONE:

DETECTING SIGNED OVERFLOW
· The Overflow Flag (OF) is set if there is signed overflow. The Carry Flag is irrelevant for signed operations. Signed overflow occurs if the result is too large to fit into the destination operand or if the destination sign bit changes. In a program unsigned overflow can be detected by a construct of the form:

Flag modifying instruction

JO SIGNED_OVERFLOW

.

.
; action if there is no signed overflow

.

JMP DONE

SIGNED_OVERFLOW:

.

.
; action if there is signed overflow

.

DONE:

HEXADECIMAL I/O ROUTINES

1. Hexadecimal output.

Write a procedure to display the contents of BX in hexadecimal.

The algorithm uses the conversions:

DecimalNumber(0, 1, 2, . . . ,9) + 30H

 HexadecimalDigit('0', '1', '2', . . . ,'9')

DecimalNumber(10, 11, 12, 13, 14, 15) + 37H

 HexadecimalDigit('A', 'B', 'C', 'D', 'E', 'F')

There are 4 hexadecimal digits in a 16-bit operand. The algorithm displays one hexadecimal digit of BX at a time:

for 4 times do

 MOV DL , BH

; put the current two highest hex digits of BX in DL

 Shift DL 4 times to the right

; leave the current highest hex digit of BX in DL

 if((DL) (9)then

(DL) := (DL) + 30H

; convert to hex digit in {'0', '1', '2', . . . , '9'}

 else

(DL) := (DL) + 37H

; convert to hex digit in {'A', 'B', 'C', 'D', 'E', 'F'}

 endif

 output: (DL)

 Rotate BX left 4 times

; put the next hex digit in the highest 4 bits of BX

endfor

output: 'H'

HEX_DISPLAY PROC

 ; Displays the contents of BX in hexadecimal

 PUSH AX

 PUSH CX

 PUSH DX

 MOV AH , 02H

 MOV CX , 4

FOR:
 MOV DL , BH

 PUSH CX

 MOV CL , 4

 SHR DL , CL

 CMP DL , 9

 JA LETTER

 ADD DL , 30H

 JMP DISPLAY

LETTER: ADD DL , 37H

DISPLAY: INT 21H

 ROL BX , CL

 POP CX

 LOOP FOR

 MOV DL , 'H'

 INT 21H

 POP DX

 POP CX

 POP AX

 RET

HEX_DISPLAY ENDP

2. Hexadecimal input

Write a procedure to input a hexadecimal value in the BX register. The reading should stop if either 4 hexadecimal digits have been read or if the "Enter" key (ASCII code: 0DH) is pressed. For any invalid input, the procedure should beep and give the user a chance of entering another value. If only 0DH is entered the procedure should set the Carry Flag.

The algorithm uses the following conversions:

character in {'0' , '1' , '2' , . . . , '9'}

-30H

digit in {0 , 1 , 2 , . . . , 9}

character in {'A' , 'B' , 'C', . . . , 'F'}

-37H

digit in {10 , 11 , 12 , . . . , 15}

character in {'a' , 'b' , 'c', . . . , 'f'}

-57H

digit in {10 , 11 , 12 , . . . , 15}

The pseudo-code algorithm is:

MOV BX , 0

MOV CL , 4

MOV CH , 0

; counts the number of hexadecimal digits read

do

 {

 Read: character

 if(character is a hexadecimal digit)then

 {

 convert character to binary

 INC CH

 SHL BX , CL

; shift zeroes in the lowest 4 bits of BX

 Insert character in the lowest 4 bits of BX

 }

 else if(character (0DH)then

 {

 Beep ;

 Move the cursor back ;

}

 else

 break ;

 endif

 } while ((CH) (4)

if((CH) = 0)then

 STC

else

 CLC

endif

HEX_INPUT PROC

 ; Inputs a 16-bit hexadecimal value in the BX register

 PUSH AX

 PUSH CX

 PUSH DX

 MOV BX , 0

 MOV CL , 4

 MOV CH , 0

START:
 MOV AH , 01H

 INT 21H

 CMP AL , '0'

 JB INVALID?

 CMP AL , '9'

 JBE VALID1

 CMP AL , 'A'

 JB INVALID

 CMP AL , 'F'

 JBE VALID2

 CMP AL , 'a'

 JB INVALID

 CMP AL , 'f'

 JBE VALID3

 JMP INVALID

VALID1: SUB AL , 30H

 JMP INSERT

VALID2: SUB AL , 37H

 JMP INSERT

VALID3: SUB AL , 57H

INSERT: INC CH

 SHL BX , CL

 OR BL , AL

 JMP NEXT

INVALID?: CMP AL , 0DH

 JE END_DO_WHILE

INVALID: MOV AH , 02H

; beep

 MOV DL , 07H

;

 INT 21H

;

 MOV DL , 08H

; backspace

 INT 21H

;

NEXT:
 CMP CH , 4

 JB START

END_DO_WHILE:

 CMP CH , 0

 JE NO_INPUT

 CLC

 JMP EXIT

NO_INPUT: STC

EXIT:
 POP DX

 POP CX

 POP AX

 RET

HEX_INPUT ENDP

DOWNLOAD THE FOLDER LABWORK7 FROM THE PC ics-said

TASK#1 (NESTED PROCEDURES)

(a) Assemble nstdproc.asm, link nstdproc.obj, and execute nsrdproc.com

(b) Modify nstdproc.asm such that the procedure crlf is still within the procedure dsply_char but at the beginning. Assemble the modified nstdproc.asm, link nstdproc.obj, and execute nsrdproc.com. WHAT IS THE OUTPUT?

(c) Assemble nstdprc2.asm, link nstdprc2.obj, and execute nstdprc2.com

(d) Modify nstdprc2.asm such that the procedure crlf and string_display2 are still within the procedure dsply_string but at the beginning. Assemble the modified nstdprc2.asm, link nstdprc2.obj, and execute nsrdprc2.com. WHAT IS THE OUTPUT?

(e) From (b) and (d) what can you conclude about the placement of nested procedures?

NOTE: MASM VERSION 4.00 AND LOWER VERSIONS DO NOT SUPPORT NESTED PROCEDURE DEFINITIONS. TASM VERSION 3.2 AND HIGHER VERSIONS, MASM VERSION 5.00 AND HIGHER VERSIONS DO SUPPORT NESTED PROCEDURE DEFINITIONS.

TASK#2 (NESTED MACROS)

(a) Study the program nstdmac.asm. This is a demonstration of the fact that macro definitions can appear inside other macros.

(b) Assemble the program, link, and then execute it.

TASK#3 (RECURSIVE PROCEDURES, USING MACROS TO WRITE STAND-ALONE PROCEDURES)

(a) Study the programs rcsvstrg.asm and rcsvsum2.asm. Specifically note how macros are used to write stand-alone procedures. Also note how rcsvsum2.asm terminates gracefully if an error condition is detected within the recursion chain.

(b) Assemble rcsvstrg.asm, link rcrsvstrg.obj, and execute rcsvstrg.exe.

(c) Assemble rcsvsum2.asm, link rcsvsum2.obj, and execute rcsvsum2.exe.

PROGRAMMING ASSIGNMENT:

1. Using the procedures HEX_INPUT and HEX_DISPLAY given in the file hex.asm, write a complete exe-format, 8086 Assembly language program that prompts for and reads two signed, 16-bit hexadecimal numbers X and Y. It then displays an output of the form:

X + Y = Z

Where Z is the sum.

If there is signed overflow the message SIGNED OVERFLOW must be displayed on the line following the above output (You may find it useful to use PUSHF and then POPF).

Note: The procedure HEX_INPUT takes care of invalid input; specifically it sets the carry-flag if the user does not enter any input. Your main procedure must terminate if any error condition is detected by HEX_INPUT.

Test your program for values given below.

r’s complement addition

Addition is performed in the usual manner, irrespective of the signs of the addends. Any final carry is discarded.

Signed addition overflow

The addition of two signed binary or hexadecimal numbers will cause an overflow if the sign of the addends are similar; but they are different from the sign of the result.
For decimal signed addition, overflow is simply determined if the result is outside the range -128 to +127 for 8-bit additions, and outside the range -32768 to +32767 for 16-bit additions.

Example: Perform each of the following signed additions and determine whether overflow will occur or not: (a) 483FH + 645AH (b) FFE7H + FFF6H (c) E9FFH + 8CF0H (d) 0206H + FFB0H

Solution:

(a) 483FH (+ve)

(b) FFE7H (-ve) (c) E9FFH (-ve)

 + 645AH (+ve)

 + FFF6H (-ve)
 + 8CF0H (-ve)

 AC99H (-ve)

 (1)FFDDH (-ve)
 (1)76EFH (+ve)

 SIGNED OVERFLOW
 (

 (

 discard

 discard

 NO SIGNED OVERFLOW
 SIGNED OVERFLOW

 (d) 0206H (+ve)

 + FFB0H
(-ve)

 (1)01B6H
(+ve)

 (

 discard

 NO SIGNED OVERFLOW; addends have opposite signs
2. Modify the program you wrote in (1.) such that the program prompts for and reads two unsigned hexadecimal numbers. If there is unsigned overflow the message to be displayed is: UNSIGNED OVERFLOW.

Unsigned addition overflow

An n-bit, unsigned addition overflow occurs if the sum is outside the allowed range of values for an n-bit number. Overflow condition is detected, computationally, for binary and hexadecimal addition by the existence of a final carry. For decimal addition overflow is detected, computationally, by the sum being outside the range. Since the CPU performs all additions in binary, decimal overflow also result in a final carry.

 In case of unsigned addition overflow, the value in the destination operand is the unsigned number obtained by discarding the final carry. This value will not be the correct sum.

Example:

EA9BH

 + FFF6H

 1EA91H

 There is unsigned overflow.

 Value in destination is EA91H

