PAGE
6
00_ReviewSuppliment_091

Why Object Orientation?

· Classification

· Encapsulation and Information Hiding
· Inheritance

· Polymorphism (Dynamic Binding)

Advantages of Object Orientation
· Code reusability

· Extensibility

· Maintanability

· Security

· Abstraction

ABSTRACT METHODS

· An abstract method has no body; it simply has a signature definition followed by a semicolon.
Example:
public abstract double area();

· Static, private, and final methods cannot be abstract, since these types of methods cannot be overridden by a subclass.

· A final class cannot contain any abstract methods.

ABSTRACT CLASSES

· Abstract classes are used to define the general structure of a family of derived classes.

· Abstract classes cannot be instantiated.

· References of an abstract type can be used to refer to an instance of a concrete subclass object.

· Abstract classes can define both abstract and concrete methods.

· A class can be declared abstract even if it does not inherit or have any abstract methods.

· Any class with an abstract method is an abstract class and it must be declared as abstract.

· A subclass that does not implement all the abstract methods it inherits must be declared abstract.

abstract class Shape{
public abstract double area();

public abstract double circumference();

}
class Circle extends Shape{

protected double radius;

public Circle(double r){

 radius = r;

}

public double area(){

 return Math.PI * radius * radius;

}

public double circumference(){

 return 2 * Math.PI * radius;

}

public double getRadius(){

 return radius;

}

}

class Rectangle extends Shape{

 protected double length, width;

 public Rectangle(double len, double w){

length = len;

width = w;

 }

 public double area(){

return length * width;

 }

 public double circumference(){

return 2 * (length + width);

 }

 public double getWidth(){

return width;

 }

 public double getLength(){

 return length;

 }

}

public class TestShape{

 public static void main(String[] args){

 Shape[] shapes = new Shape[3];

 shapes[0] = new Circle(2.0); // widening type conversion

 shapes[1] = new Rectangle(3.0, 1.5);

 shapes[2] = new Rectangle(4.0, 2.0);

 double totalArea = 0;

 for(int k = 0; k < shapes.length; k++)

totalArea += shapes[k].area(); //dynamic method lookup

 System.out.println(totalArea);

 }

}
INTERFACES

· An interface is a reference data type.
· An interface does not define any implementation.

· The only data fields allowed in an interface are static and final constants.

· All methods of an interface are implicitly abstract and public.

· All methods of an interface are instance methods (static methods cannot be abstract).

· An interface does not define a constructor.

· A Java class can implement any number of interfaces.

· A class that does not implement each method of an interface it implements must be declared abstract.

· An interface can extend more than one interface.

public interface Centered{

 public void setCenter(double x, double y);

 public double getCenterX();

 public double getCenterY();

}

[image: image1]
public class CenteredRectangle extends Rectangle implements Centered{
 private double cx, cy;

 public CenteredRectangle(double len, double w, double cx, double cy){

 super(len, w);

 this.cx = cx;

 this.cy = cy;

 }

 public void setCenter(double x, double y){

 cx = x;

 cy = y;

 }

 public double getCenterX(){return cx;}
 public double getCenterY(){return cy;}

}

// Sometimes a narrowing type conversion is required
Shape[] shapes = new Shape[3];

// . . .

if(shapes[1] instanceof Centered){

 Centered c = (Centered) shapes[1];

 // . . .

}
MEMBER INNER CLASSES

Member classes are defined within a top-level class, and an instance is always associated with a particular instance of the to-level class.

Syntax:

accessType class OuterClass extends SuperClass implements Interfaces{

 accessType class MemberClassName extends SuperClassName implements Interfaces{

 // Members of the Member class

 }

 // Members of the top-level class

 }

· The member class may be referred to outside the outer class as:

OuterClass.MemberClass
· Member classes cannot contain any static members except for static final data members.
· A member class has access to all the members of the class it is contained in.

· Within the member class, this refers to the member class instance, the containing class may be referred by using: OuterClassName.this

Example:

class Square{
 double length, width;

 public Square(double w){

 length = w;

 width = w;

 }

 public void makeBox(double height){

 Box b = new Box(height);

 System.out.println("The volume is: " + b.getVolume());

 }

 class Box{

 double depth;
 public Box(double d){

 depth = d;

 }

 public double getVolume(){

 return length * width * depth;
 }

 }

}

LOCAL INNER CLASSES
· A Local class is defined within a block of code, and it is only visible within that block.

· Syntax:

{

 // . . .

 class LocalClass extends SuperClass implements Interfaces{

// . . .

 }
 // . . .
}

· A local class:

1. May not have an access type specified.

2. Cannot contain static members except for static final data members.

· A local class can access:

1. Members of the enclosing class.

2. final local variables and parameters of the enclosing block of code.

ANONYMOUS INNER CLASSES
An anonymous class is a special type of local class. It has no name and the class definition is combined with the instantiation of an object of the class.
Syntax:

new SuperClass(parameters){

 // members of the anonymous class

}
 meaning: Create an object of an anonymous inner class that is extending SuperClass, pass the parameters if any, to the SuperClass
 or

 new Interface(){

 // members of the anonymous class

}
meaning: Create an object of an anonymous inner class that is implementing Interface
Note: The address of the object created can be assigned to a reference:

SuperClass ref1 = new SuperClass(parameters){

 // members of the anonymous class

};
or

Interface ref2 = new Interface(){

 // members of the anonymous class

};
· Anonymous classes cannot have explicit constructors as they have no name; any parameters specified are passed to the super-class constructor.
Example:
public class TestAnonymousClass{

 public static void main(String[] args){

 Object obj = new Object(){

 public String toString(){

 return "Hello";

 }

 };

System.out.println(obj);

 }
}

or

public class TestAnonymousClass{

 public static void main(String[] args){

 System.out.println(new Object(){

 public String toString(){

 return "Hello";

 }

 });

 }
}

The above code defines and instantiates an anonymous class which extends Object and overrides its toString() method.
INSTANCE INITIALIZER BLOCKS (INSTANCE INITIALIZERS)

· A class can have one or more instance initializers. An instance initializer is just a block of arbitrary Java code that appears within curly braces:

{

// …

}

· An instance initializer can appear anywhere a field or method definition can appear.

· The body of each instance initializer is inserted at the beginning of every constructor of the class.

· Instance initializers can initialize arrays and other fields that require complex initializations. They are sometimes useful because they locate the initialization code right next to the field, instead of separating it off in a constructor.

· Example:

private static final int NUMPTS = 100;

private int[] data = new int[NUMPTS];
{

 for(int k = 0; k < NUMPTS; k++)

 data[k] = k;

}

· Instance initializers were introduced in Java to support Anonymous inner classes.

Shape

Circle

Rectangle

CenteredRectangle

Centered

