PAGE
2

Introduction to Selection and Looping Statements
1. In C, each declaration and each simple executable statement must be terminated by a semicolon.

2. Declarations and simple executable statements may be grouped together by { and } to form a compound statement or a block of statements:

{

 statement1;

 statement2;

 .

 .

 .

 statementN;

}

3. A compound statement is not terminated by a semicolon. It may contain:

· zero or more statements
· other nested compound statements

4. Scope Rules
· The scope of a variable is the portion of program where that variable can be used.

· In C, the scope of a variable is from the point it is declared to the end of the block in which it is declared, except from the point in an inner block where the variable is re-declared to the end of that block.

Example: Consider the following C program:

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 int x = 1, y = 2;
 printf(" x = %d, y = %d\n", x, y); // outer x, outer y
 {
 printf(" x = %d, y = %d\n", x, y); // outer x, outer y
 int x = 3;
 int z = 4;
 printf(" x = %d, y = %d\n", x, y); // inner x, outer y
 printf(" z = %d\n", z);
 {
 printf(" x = %d, y = %d\n", x, y); // inner x, outer y
 int x = 5;
 printf(" x = %d, y = %d\n", x, y); // innermost x,outer y
 }
 }
 printf(" x = %d, y = %d\n", x, y); // outer x, outer y
 /* note: the scope of z is from where it is declared to the end of
 inner block. It is an error to try to access z at this point
 */
 system("PAUSE");
 return 0;
}
The output is:

 [image: image1.png]H

5. Relational and Equality Operators
 C has the following relational and equality operators:

	Operator
	Meaning

	==
	Equal

	!=
	Not equal

	>
	Greater than

	>=
	Greater or equal

	<
	Less

	<=
	Less or equal

 Relational and equality operators are used to form comparisons (conditions). The value of
 A comparison is either true or false

 Examples:

 x == y

 z != 5.5

 (2 * a – b) > (c + d)

 'a' < 'z'

 Note: In C, an expression that evaluates to zero is false; an expression that evaluates to

 nonzero is true
 Note: ' ' < '0' < '1' < . . . < '9' < 'A' < 'B' < . . . 'Z' < 'a' < 'b' < . . . 'z'
 The above will form the basis of string comparisons later on in the course
6. Logical Operators

C has the following logical operators:
	Operator
	Meaning

	!
	not

	&&
	and

	||
	or

	
	

 Logical operators are used with relational and equality expressions to form complex comparisons (conditions):

 Examples:

 ((2 * a – b) > (c + d)) && (z != 5.5)

The truth tables of logical operators:

 Let A and B be relational, equality, or logical expressions:

· Truth table for !
	A
	! A

	true
	false

	false
	true

· Truth table for &&

	A
	B
	A && B

	true
	true
	true

	false
	true
	false

	true
	false
	false

	false
	false
	false

 Note: true && true && true && . . . && true && false is false
· Truth table for ||

	A
	B
	A || B

	true
	true
	true

	false
	true
	true

	true
	false
	true

	false
	false
	false

 Note: false || false || false || . . . || false || true is true
7. Precedence and Associativity rules of the operators we have studied:
 Some C operators in order of precedence (highest to lowest). Their associativity
 indicates in what order operators of equal precedence in an expression are applied.

	Operator
	Description
	Associativity

	()
	Parentheses and function calls (see Note 1)
	left-to-right

	+ -
!
(type)
	Unary plus/minus
Logical negation
Cast (change type)
	right-to-left

	* / %
	Multiplication/division/modulus
	left-to-right

	+ -
	Addition/subtraction
	left-to-right

	< <=
> >=
	Relational less than/less than or equal to
Relational greater than/greater than or equal to
	left-to-right

	== !=
	Relational is equal to/is not equal to
	left-to-right

	&&
	Logical AND
	left-to-right

	||
	Logical OR
	left-to-right

	=
	Assignment
	right-to-left

	Note 1: Parentheses are also used to group sub-expressions to force a different precedence; such parenthetical expressions can be nested and are evaluated from inner to outer.

 Example:

 [image: image2.png]int flag *x- 2 >=)y- 50/2 & yrz| x!=6;

 De Morgans Rules:

 Let A and B be relational, equality, or logical expressions then:

 ! (A && B) is equivalent to ! A || ! B

 ! (A || B) is equivalent to ! A && ! B[image: image3.png]

